当聊天补全(chatCompletion)流中返回[DONE]时,您可调用此接口请求对话结果。
/dataAgent/llm/openApi/v2/signed/agent/chatResult?sessionId={sessionId}&historyId={historyId}Body参数如下。
参数 | 类型 | 是否必选 | 示例值 | 描述 |
|---|---|---|---|---|
sessionId | int | 是 | 12886164 | 会话ID,创建会话时返回结果的sessionInfo中会返回会话ID,详情请参见创建会话 - 副本。 |
historyId | int | 是 | 12886163 | 当次的会话结果ID,例如,对于模糊问题拆解为多个子问题进行问数时,每个子问题的结果均会有一个会话结果ID。 |
返回结果的核心参数详细说明如下。
一级参数 | 二级参数 | 类型 | 描述 |
|---|---|---|---|
disableBookmarkQuestion | 不涉及 | boolean | 是否收藏问题 |
errorMsg | 不涉及 | string | 错误信息 |
execErrorMsg | 不涉及 | string | 执行错误信息 |
isSuccess | 不涉及 | boolean | 是否执行成功 |
isEmpty | 不涉及 | boolean | 是否空结果 |
llmResult | 大模型执行过程 | ||
code | string | 模型编写的代码,包括SQL和Python | |
dataSetIdList | list[int] | 使用到的数据集 | |
execContext | string | 执行上下文,即转义前的SQL | |
executeSql | string | 实际执行的SQL | |
originSql | string | 原始SQL | |
recallKnowledge | string | 召回的数据集信息,markdown格式 | |
rewriteSql | string | 重写的SQL,和execContext差不多 | |
sqlList | list[string] | 简化后的语义SQL | |
thought | string | 大模型思考过程 | |
total | list[dict] | 整个执行过程 | |
renderResult | 数据查询结果 | ||
chartType | string | 图表类型(枚举)
| |
datasets | list[object] | 问数结果数据集 | |
dimensions | list[string] | 结果集中的维度字段 | |
metrics | list[string] | 结果集中的指标字段 | |
vizSchema | object | 渲染的配置信息 |
{ "JSONIFY_PRETTYPRINT_REGULAR": false, "code": "llm/ok", "data": { "debugInfo": { "historyId": 2983696, "noDataReason": null, "requestId": "53882b70-5494-40e2-9723-e8d10bb46bd9.T2VuFNrMpS3JH5ZQZHAuZB.bi.35", "sessionId": 11469472 }, "disableBookmarkQuestion": false, "errorMsg": null, "execErrorMsg": "", "isEmpty": false, "isSuccess": true, "llmResult": { "code": "\n# 编写sql查询\nsql = \"\"\"select `scene_first_level_type`, sum(`uv`) as uv_sum from `风神大模型大盘数据集` where `date_range` = '2025-09-03' group by `scene_first_level_type`\"\"\"\n\n# 执行sql查询并获取结果\ndf = execute_sql(sql, max_rows=1000)\n\n# 输出结果\nanswer(df)\n\n\n\"\"\"\n实际执行sql:\nselect (`1700060096716_scene_first_level_type`) as `_1700060096716`,\n (sum(`1700060096719_uv`)) as `uv_sum`\nfrom `perfu.风神大模型大盘数据集` `风神大模型大盘数据集`\nwhere ((`1700060096715_date_range`) = ('2025-09-03'))\n and (todate(`1700060096713_date`) = '2025-09-03')\ngroup by `_1700060096716` limit 100000\n\"\"\"\n\n", "dataSetIdList": [ 3206432 ], "execContext": " select (`1700060096716_scene_first_level_type`) as `_1700060096716`, (sum(`1700060096719_uv`)) as `uv_sum` from `perfu.风神大模型大盘数据集` `风神大模型大盘数据集` where ( (`1700060096715_date_range`) = ('2025-09-03') ) and (todate(`1700060096713_date`) = '2025-09-03') group by `_1700060096716` limit 100000 ", "execResult": "查询成功,查询结果的总行数为:13。查询结果的结构和完整数据明细如下:\n\n|一级场景类型|uv(求和)|\n|--|--|\n|数据集报错诊断|208|\n|图表配置优化|111|\n|sql查询助手|2578|\n|搜索|4288|\n|magibook|1628|\n|整体|8560|\n|数据解读|158|\n|表达式生成|680|\n|仪表盘制作|0|\n|notebook|9|\n|分析取数|3943|\n|代码补全|5258|\n|数据集元信息生成|126|", "executeSql": "SELECT (`scene_first_level_type`) AS `_1700060096716` ,\n (SUM(`uv`)) AS `uv_sum` \n FROM (select `date` as `date` , `product` as `product` , `date_type` as `date_type` , `date_range` as `date_range` , `scene_first_level_type` as `scene_first_level_type` , `scene_second_level_type` as `scene_second_level_type` , `env` as `env` , `uv` as `uv` , `penetration_rate` as `penetration_rate` , `coverage_rate` as `coverage_rate` , `adoption_rate` as `adoption_rate` , `badcase_rate` as `badcase_rate` , `retention_rate` as `retention_rate` , `last_uv` as `last_uv` , `last_penetration_rate` as `last_penetration_rate` , `last_coverage_rate` as `last_coverage_rate` , `last_adoption_rate` as `last_adoption_rate` , `last_badcase_rate` as `last_badcase_rate` , `last_retention_rate` as `last_retention_rate` , `uv_target` as `uv_target` , `penetration_rate_target` as `penetration_rate_target` , `coverage_rate_target` as `coverage_rate_target` , `adoption_rate_target` as `adoption_rate_target` , `badcase_rate_target` as `badcase_rate_target` , `retention_rate_target` as `retention_rate_target` , `apv_target` as `apv_target` , `apv` as `apv` , `last_apv` as `last_apv` , `date_range_lastday` as `date_range_lastday` , `active_5_day` as `active_5_day` , `active_2_day` as `active_2_day` , `active_3_day` as `active_3_day` , `active_4_day` as `active_4_day` from `llm_dw`.`app_sophon_df` where 1=1 and `product` = ('aeolus') and `product` = ('aeolus')) `\u98ce\u795e\u5927\u6a21\u578b\u5927\u76d8\u6570\u636e\u96c6` \n WHERE ( (`date_range`) = ('2025-09-03') ) AND (toDate(`date`) = '2025-09-03') \n GROUP BY `_1700060096716` \n LIMIT 100000 \n SET TINGS max_execution_time=180 \n SET TINGS max_threads=16 , max_execution_time=100 , max_memory_usage=68719476736 , max_query_cpu_seconds=250 , max_bytes_to_read=2147483648000 , max_bytes_to_read_local=107374182400 FORMAT JSONCompact/*miss cache reason:no cache data , expire_duration: None , cache_time: None*/", "originSql": "select `scene_first_level_type` ,\n sum(`uv`) as uv_sum \n from `风神大模型大盘数据集` \n where `date_range` = '2025-09-03' \n group by `scene_first_level_type`", "recallKnowledge": "\n\n## 表`3206432`的相关信息\n表信息如下:\n表id: `3206432`\n表名: `风神大模型大盘数据集`\n\n字段列表,字段名均以``包围:\n\n|字段名|数据类型|相关信息|抽样示例值(非全量)|\n| ---- | ---- | ---- | ---- |\n|`scene_first_level_type`|string|||\n|`last_badcase_rate`|float|||\n|`last_retention_rate`|float|||\n|`active_3_day`|int|||\n|`retention_rate_target`|float|||\n|`last_uv`|int|||\n|`coverage_rate_target`|float|||\n|`badcase_rate_target`|float|||\n|`env`|string|||\n|`badcase_rate`|float|||\n|`last_apv`|float|||\n|`coverage_rate`|float|||\n|`adoption_rate_target`|float|||\n|`scene_second_level_type`|string|||\n|`last_coverage_rate`|float|||\n|`active_2_day`|int|||\n|`active_5_day`|int|||\n|`last_adoption_rate`|float|||\n|`adoption_rate`|float|||\n|`apv_target`|float|||\n|`date_range`|string|||\n|`penetration_rate_target`|float|||\n|`penetration_rate`|float|||\n|`uv_target`|int|||\n|`last_penetration_rate`|float|||\n|`uv`|int|||\n|`date_type`|string|||\n|`apv`|float|||\n|`retention_rate`|float|||\n|`active_4_day`|int|||\n\n\n\n", "rewriteSql": "select (`1700060096716_scene_first_level_type`) as `_1700060096716` ,\n (sum(`1700060096719_uv`)) as `uv_sum` \n from `perfu.风神大模型大盘数据集` `风神大模型大盘数据集` \n where ( (`1700060096715_date_range`) = ('2025-09-03') ) and (todate(`1700060096713_date`) = '2025-09-03') \n group by `_1700060096716` \n limit 100000", "sqlList": [ "select `scene_first_level_type`, sum(`uv`) as uv_sum from `风神大模型大盘数据集` where `date_range` = '2025-09-03' group by `scene_first_level_type`" ], "thought": "用户需要分析昨天(2025-09-03)使用风神大模型按一级场景分组的各场景uv,从探查结果可知,`风神大模型大盘数据集`包含所需的`scene_first_level_type`和`uv`字段,且有日期字段`date_range`。因此,选择该表进行查询,通过where子句筛选出日期为2025-09-03的数据,再按`scene_first_level_type`分组并对`uv`求和得到各场景的uv。", "total": [ { "key": "thought", "value": "用户需要分析昨天(2025-09-03)使用风神大模型按一级场景分组的各场景uv,从探查结果可知,`风神大模型大盘数据集`包含所需的`scene_first_level_type`和`uv`字段,且有日期字段`date_range`。因此,选择该表进行查询,通过where子句筛选出日期为2025-09-03的数据,再按`scene_first_level_type`分组并对`uv`求和得到各场景的uv。" }, { "key": "exec_context", "value": "-- 模型生成的sql \n select `scene_first_level_type` ,\n sum(`uv`) as uv_sum \n from `风神大模型大盘数据集` \n where `date_range` = '2025-09-03' \n group by `scene_first_level_type`\n\n-- 实际执行的sql \nselect (`1700060096716_scene_first_level_type`) as `_1700060096716` ,\n (sum(`1700060096719_uv`)) as `uv_sum` \n from `perfu.风神大模型大盘数据集` `风神大模型大盘数据集` \n where ( (`1700060096715_date_range`) = ('2025-09-03') ) and (todate(`1700060096713_date`) = '2025-09-03') \n group by `_1700060096716` \n limit 100000" }, { "key": "exec_result", "status": "success", "value": "查询成功,查询结果的总行数为:13" } ] }, "renderResult": { "datasets": [ { "1756965117283": "数据集报错诊断", "1756965117284": "208" }, { "1756965117283": "图表配置优化", "1756965117284": "111" }, { "1756965117283": "sql查询助手", "1756965117284": "2578" }, { "1756965117283": "搜索", "1756965117284": "4288" }, { "1756965117283": "magibook", "1756965117284": "1628" }, { "1756965117283": "整体", "1756965117284": "8560" }, { "1756965117283": "数据解读", "1756965117284": "158" }, { "1756965117283": "表达式生成", "1756965117284": "680" }, { "1756965117283": "仪表盘制作", "1756965117284": "0" }, { "1756965117283": "notebook", "1756965117284": "9" }, { "1756965117283": "分析取数", "1756965117284": "3943" }, { "1756965117283": "代码补全", "1756965117284": "5258" }, { "1756965117283": "数据集元信息生成", "1756965117284": "126" } ], "dimensions": [ "一级场景类型" ], "metrics": [ "uv(\u6c42\u548c)" ], "vizSchema": { "fields": [ { "alias": "\u4e00\u7ea7\u573a\u666f\u7c7b\u578b", "expr": "`1700060096716_scene_first_level_type`", "id": "1756965117283", "location": "dimension", "role": "dimension", "type": "string", "visible": true }, { "alias": "uv(\u6c42\u548c)", "dataFormat": null, "enableFormat": true, "expr": "SUM(`1700060096719_uv`)", "format": { "auto": false, "kSep": true, "precision": 2, "precisionType": "significantDecimal", "prefix": "", "suffix": "", "type": "digit", "unit": "auto" }, "id": "1756965117284", "location": "measure", "minValue": 9, "role": "measure", "type": "int", "visible": true } ] } } }, "msg": {} }