You need to enable JavaScript to run this app.
数据智能体 DataAgent(私有化)

数据智能体 DataAgent(私有化)

复制全文
智能问数(新版)
获取对话结果
复制全文
获取对话结果

当聊天补全(chatCompletion)流中返回[DONE]时,您可调用此接口请求对话结果。

请求说明
  • 请求方式:GET
  • 请求地址:/dataAgent/llm/openApi/v2/signed/agent/chatResult?sessionId={sessionId}&historyId={historyId}

请求参数

Body参数如下。

参数

类型

是否必选

示例值

描述

sessionId

int

12886164

会话ID,创建会话时返回结果的sessionInfo中会返回会话ID,详情请参见创建会话

historyId

int

12886163

当次的会话结果ID,例如,对于模糊问题拆解为多个子问题进行问数时,每个子问题的结果均会有一个会话结果ID。
需要配置为聊天补全(chatCompletion)接口返回的事件流type=resultstatus=success时,事件内result字段中的historyId,详情可参见聊天补全

返回参数

返回结果的核心参数详细说明如下。

一级参数

二级参数

类型

描述

disableBookmarkQuestion

不涉及

boolean

是否收藏问题

errorMsg

不涉及

string

错误信息

execErrorMsg

不涉及

string

执行错误信息

isSuccess

不涉及

boolean

是否执行成功

isEmpty

不涉及

boolean

是否空结果

llmResult

大模型执行过程

code

string

模型编写的代码,包括SQL和Python

dataSetIdList

list[int]

使用到的数据集

execContext

string

执行上下文,即转义前的SQL

executeSql

string

实际执行的SQL

originSql

string

原始SQL

recallKnowledge

string

召回的数据集信息,markdown格式

rewriteSql

string

重写的SQL,和execContext差不多

sqlList

list[string]

简化后的语义SQL

thought

string

大模型思考过程

total

list[dict]

整个执行过程

renderResult

数据查询结果

chartType

string

图表类型(枚举)

  • line:折线图
  • column_parallel:柱状图
  • pie:饼图
  • measure_card:指标卡
  • table:表格
  • scatter:散点图
  • map:中国地图
  • double_axis:双轴图
  • combination:组合图

datasets

list[object]

问数结果数据集

dimensions

list[string]

结果集中的维度字段

metrics

list[string]

结果集中的指标字段

vizSchema

object

渲染的配置信息

返回示例
{
    "JSONIFY_PRETTYPRINT_REGULAR": false,
    "code": "llm/ok",
    "data": {
        "debugInfo": {
            "historyId": 2983696,
            "noDataReason": null,
            "requestId": "53882b70-5494-40e2-9723-e8d10bb46bd9.T2VuFNrMpS3JH5ZQZHAuZB.bi.35",
            "sessionId": 11469472
        },
        "disableBookmarkQuestion": false,
        "errorMsg": null,
        "execErrorMsg": "",
        "isEmpty": false,
        "isSuccess": true,
        "llmResult": {
            "code": "\n# 编写sql查询\nsql = \"\"\"select `scene_first_level_type`, sum(`uv`) as uv_sum from `风神大模型大盘数据集` where `date_range` = '2025-09-03' group by `scene_first_level_type`\"\"\"\n\n# 执行sql查询并获取结果\ndf = execute_sql(sql, max_rows=1000)\n\n# 输出结果\nanswer(df)\n\n\n\"\"\"\n实际执行sql:\nselect (`1700060096716_scene_first_level_type`) as `_1700060096716`,\n       (sum(`1700060096719_uv`)) as `uv_sum`\nfrom   `perfu.风神大模型大盘数据集` `风神大模型大盘数据集`\nwhere  ((`1700060096715_date_range`) = ('2025-09-03'))\n   and (todate(`1700060096713_date`) = '2025-09-03')\ngroup by `_1700060096716` limit 100000\n\"\"\"\n\n",
            "dataSetIdList": [
                3206432
            ],
            "execContext": "  select  (`1700060096716_scene_first_level_type`) as `_1700060096716`, (sum(`1700060096719_uv`)) as `uv_sum`  from `perfu.风神大模型大盘数据集` `风神大模型大盘数据集`     where ( (`1700060096715_date_range`) = ('2025-09-03') ) and (todate(`1700060096713_date`) = '2025-09-03')  group by `_1700060096716`    limit 100000   ",
            "execResult": "查询成功,查询结果的总行数为:13。查询结果的结构和完整数据明细如下:\n\n|一级场景类型|uv(求和)|\n|--|--|\n|数据集报错诊断|208|\n|图表配置优化|111|\n|sql查询助手|2578|\n|搜索|4288|\n|magibook|1628|\n|整体|8560|\n|数据解读|158|\n|表达式生成|680|\n|仪表盘制作|0|\n|notebook|9|\n|分析取数|3943|\n|代码补全|5258|\n|数据集元信息生成|126|",
            "executeSql": "SELECT (`scene_first_level_type`) AS `_1700060096716` ,\n    (SUM(`uv`)) AS `uv_sum` \n    FROM (select `date` as `date` , `product` as `product` , `date_type` as `date_type` , `date_range` as `date_range` , `scene_first_level_type` as `scene_first_level_type` , `scene_second_level_type` as `scene_second_level_type` , `env` as `env` , `uv` as `uv` , `penetration_rate` as `penetration_rate` , `coverage_rate` as `coverage_rate` , `adoption_rate` as `adoption_rate` , `badcase_rate` as `badcase_rate` , `retention_rate` as `retention_rate` , `last_uv` as `last_uv` , `last_penetration_rate` as `last_penetration_rate` , `last_coverage_rate` as `last_coverage_rate` , `last_adoption_rate` as `last_adoption_rate` , `last_badcase_rate` as `last_badcase_rate` , `last_retention_rate` as `last_retention_rate` , `uv_target` as `uv_target` , `penetration_rate_target` as `penetration_rate_target` , `coverage_rate_target` as `coverage_rate_target` , `adoption_rate_target` as `adoption_rate_target` , `badcase_rate_target` as `badcase_rate_target` , `retention_rate_target` as `retention_rate_target` , `apv_target` as `apv_target` , `apv` as `apv` , `last_apv` as `last_apv` , `date_range_lastday` as `date_range_lastday` , `active_5_day` as `active_5_day` , `active_2_day` as `active_2_day` , `active_3_day` as `active_3_day` , `active_4_day` as `active_4_day` from `llm_dw`.`app_sophon_df` where 1=1 and `product` = ('aeolus') and `product` = ('aeolus')) `\u98ce\u795e\u5927\u6a21\u578b\u5927\u76d8\u6570\u636e\u96c6` \n        WHERE ( (`date_range`) = ('2025-09-03') ) AND (toDate(`date`) = '2025-09-03') \n        GROUP BY `_1700060096716` \n        LIMIT 100000 \n            SET TINGS max_execution_time=180 \n                SET TINGS max_threads=16 , max_execution_time=100 , max_memory_usage=68719476736 , max_query_cpu_seconds=250 , max_bytes_to_read=2147483648000 , max_bytes_to_read_local=107374182400 FORMAT JSONCompact/*miss cache reason:no cache data , expire_duration: None , cache_time: None*/",
            "originSql": "select `scene_first_level_type` ,\n    sum(`uv`) as uv_sum \n    from `风神大模型大盘数据集` \n        where `date_range` = '2025-09-03' \n        group by `scene_first_level_type`",
            "recallKnowledge": "\n\n## 表`3206432`的相关信息\n表信息如下:\n表id: `3206432`\n表名: `风神大模型大盘数据集`\n\n字段列表,字段名均以``包围:\n\n|字段名|数据类型|相关信息|抽样示例值(非全量)|\n| ---- | ---- | ---- | ---- |\n|`scene_first_level_type`|string|||\n|`last_badcase_rate`|float|||\n|`last_retention_rate`|float|||\n|`active_3_day`|int|||\n|`retention_rate_target`|float|||\n|`last_uv`|int|||\n|`coverage_rate_target`|float|||\n|`badcase_rate_target`|float|||\n|`env`|string|||\n|`badcase_rate`|float|||\n|`last_apv`|float|||\n|`coverage_rate`|float|||\n|`adoption_rate_target`|float|||\n|`scene_second_level_type`|string|||\n|`last_coverage_rate`|float|||\n|`active_2_day`|int|||\n|`active_5_day`|int|||\n|`last_adoption_rate`|float|||\n|`adoption_rate`|float|||\n|`apv_target`|float|||\n|`date_range`|string|||\n|`penetration_rate_target`|float|||\n|`penetration_rate`|float|||\n|`uv_target`|int|||\n|`last_penetration_rate`|float|||\n|`uv`|int|||\n|`date_type`|string|||\n|`apv`|float|||\n|`retention_rate`|float|||\n|`active_4_day`|int|||\n\n\n\n",
            "rewriteSql": "select (`1700060096716_scene_first_level_type`) as `_1700060096716` ,\n    (sum(`1700060096719_uv`)) as `uv_sum` \n    from `perfu.风神大模型大盘数据集` `风神大模型大盘数据集` \n        where ( (`1700060096715_date_range`) = ('2025-09-03') ) and (todate(`1700060096713_date`) = '2025-09-03') \n        group by `_1700060096716` \n        limit 100000",
            "sqlList": [
                "select `scene_first_level_type`, sum(`uv`) as uv_sum from `风神大模型大盘数据集` where `date_range` = '2025-09-03' group by `scene_first_level_type`"
            ],
            "thought": "用户需要分析昨天(2025-09-03)使用风神大模型按一级场景分组的各场景uv,从探查结果可知,`风神大模型大盘数据集`包含所需的`scene_first_level_type`和`uv`字段,且有日期字段`date_range`。因此,选择该表进行查询,通过where子句筛选出日期为2025-09-03的数据,再按`scene_first_level_type`分组并对`uv`求和得到各场景的uv。",
            "total": [
                {
                    "key": "thought",
                    "value": "用户需要分析昨天(2025-09-03)使用风神大模型按一级场景分组的各场景uv,从探查结果可知,`风神大模型大盘数据集`包含所需的`scene_first_level_type`和`uv`字段,且有日期字段`date_range`。因此,选择该表进行查询,通过where子句筛选出日期为2025-09-03的数据,再按`scene_first_level_type`分组并对`uv`求和得到各场景的uv。"
                },
                {
                    "key": "exec_context",
                    "value": "-- 模型生成的sql \n select `scene_first_level_type` ,\n    sum(`uv`) as uv_sum \n    from `风神大模型大盘数据集` \n        where `date_range` = '2025-09-03' \n        group by `scene_first_level_type`\n\n-- 实际执行的sql \nselect (`1700060096716_scene_first_level_type`) as `_1700060096716` ,\n    (sum(`1700060096719_uv`)) as `uv_sum` \n    from `perfu.风神大模型大盘数据集` `风神大模型大盘数据集` \n        where ( (`1700060096715_date_range`) = ('2025-09-03') ) and (todate(`1700060096713_date`) = '2025-09-03') \n        group by `_1700060096716` \n        limit 100000"
                },
                {
                    "key": "exec_result",
                    "status": "success",
                    "value": "查询成功,查询结果的总行数为:13"
                }
            ]
        },
        "renderResult": {
            "datasets": [
                {
                    "1756965117283": "数据集报错诊断",
                    "1756965117284": "208"
                },
                {
                    "1756965117283": "图表配置优化",
                    "1756965117284": "111"
                },
                {
                    "1756965117283": "sql查询助手",
                    "1756965117284": "2578"
                },
                {
                    "1756965117283": "搜索",
                    "1756965117284": "4288"
                },
                {
                    "1756965117283": "magibook",
                    "1756965117284": "1628"
                },
                {
                    "1756965117283": "整体",
                    "1756965117284": "8560"
                },
                {
                    "1756965117283": "数据解读",
                    "1756965117284": "158"
                },
                {
                    "1756965117283": "表达式生成",
                    "1756965117284": "680"
                },
                {
                    "1756965117283": "仪表盘制作",
                    "1756965117284": "0"
                },
                {
                    "1756965117283": "notebook",
                    "1756965117284": "9"
                },
                {
                    "1756965117283": "分析取数",
                    "1756965117284": "3943"
                },
                {
                    "1756965117283": "代码补全",
                    "1756965117284": "5258"
                },
                {
                    "1756965117283": "数据集元信息生成",
                    "1756965117284": "126"
                }
            ],
            "dimensions": [
                "一级场景类型"
            ],
            "metrics": [
                "uv(\u6c42\u548c)"
            ],
            "vizSchema": {
                "fields": [
                    {
                        "alias": "\u4e00\u7ea7\u573a\u666f\u7c7b\u578b",
                        "expr": "`1700060096716_scene_first_level_type`",
                        "id": "1756965117283",
                        "location": "dimension",
                        "role": "dimension",
                        "type": "string",
                        "visible": true
                    },
                    {
                        "alias": "uv(\u6c42\u548c)",
                        "dataFormat": null,
                        "enableFormat": true,
                        "expr": "SUM(`1700060096719_uv`)",
                        "format": {
                            "auto": false,
                            "kSep": true,
                            "precision": 2,
                            "precisionType": "significantDecimal",
                            "prefix": "",
                            "suffix": "",
                            "type": "digit",
                            "unit": "auto"
                        },
                        "id": "1756965117284",
                        "location": "measure",
                        "minValue": 9,
                        "role": "measure",
                        "type": "int",
                        "visible": true
                    }
                ]
            }
        }
    },
    "msg": {}
}
最近更新时间:2025.12.10 18:22:10
这个页面对您有帮助吗?
有用
有用
无用
无用