接口用于实现向量检索。向量检索是一种基于向量空间模型的检索方法,通过计算向量之间的相似度进行检索。在一个给定向量数据集中,向量检索按照某种度量方式(比如内积、欧式距离),对向量构建的一种时间和空间上比较高效的数据结构,能够高效地检索出与目标向量相似的 K 个向量。
说明
请求向量数据库 VikingDB 的 OpenAPI 接口时,可以使用 ak、sk 构造签名进行鉴权。请参见数据面API调用流程,复制调用示例并填入必要信息
URI | /api/vikingdb/data/search/vector | 统一资源标识符 |
|---|---|---|
方法 | POST | 客户端对向量数据库服务器请求的操作类型 |
请求头 | Content-Type: application/json | 请求消息类型 |
Authorization: HMAC-SHA256 *** | 鉴权 |
仅列出本接口特有的参数。更多信息请参见检索公共参数。
参数名 | 必选 | 类型 | 备注 |
|---|---|---|---|
dense_vector | 是 | list | 检索的稠密向量。 |
sparse_vector | 否 | map<string,float32> | 检索的稀疏向量。 |
req_path = "/api/vikingdb/data/search/vector" req_body = { "collection_name": "test_coll", "index_name": "idx_1", "dense_vector": [0.1243, -0.344345, 0.43232, ......], "limit": 2 }
{ "code": "Success", "message": "The API call was executed successfully.", "request_id": "02175438839168500000000000000000000ffff0a003ee4fc3499", "result": { "data": [ { "id": "uid_001", "fields": { "f_good_id": "uid_001", "f_price": 999000 }, "score": 9.899999618530273, "ann_score": 9.899999618530273 }, { "id": "uid_002", "fields": { "f_good_id": "uid_002", "f_price": 309000 }, "score": 8.324234999961, "ann_score": 8.324234999961, } ], "total_return_count": 2 } }
req_path = "/api/vikingdb/data/search/vector" req_body = { "collection_name": "test_coll", "index_name": "idx_1", "dense_vector": [0.1243, -0.344345, 0.43232, ......], "sparse_vector": {"宋": 0.1, "官窑": 0.5} "limit": 2 }
{ "code": "Success", "message": "The API call was executed successfully.", "request_id": "02175438839168500000000000000000000ffff0a003ee4fc3499", "result": { "data": [ { "id": "uid_001", "fields": { "f_good_id": "uid_001", "f_price": 999000 }, "score": 10.899999618530273, "ann_score": 10.899999618530273 }, { "id": "uid_002", "fields": { "f_good_id": "uid_002", "f_price": 309000 }, "score": 4.324234999961, "ann_score": 4.324234999961, } ], "total_return_count": 2 } }
""" pip3 install volcengine """ import os from volcengine.auth.SignerV4 import SignerV4 from volcengine.Credentials import Credentials from volcengine.base.Request import Request import requests, json class ClientForDataApi: def __init__(self, ak, sk, host): self.ak = ak self.sk = sk self.host = host def prepare_request(self, method, path, params=None, data=None): r = Request() r.set_shema("https") r.set_method(method) r.set_connection_timeout(10) r.set_socket_timeout(10) mheaders = { 'Accept': 'application/json', 'Content-Type': 'application/json', 'Host': self.host, } r.set_headers(mheaders) if params: r.set_query(params) r.set_host(self.host) r.set_path(path) if data is not None: r.set_body(json.dumps(data)) credentials = Credentials(self.ak, self.sk, 'vikingdb', 'cn-beijing') SignerV4.sign(r, credentials) return r def do_req(self, req_method, req_path, req_params, req_body): req = self.prepare_request(method=req_method, path=req_path, params=req_params, data=req_body) return requests.request(method=req.method, url="http://{}{}".format(self.host, req.path), headers=req.headers, data=req.body, timeout=10000) if __name__ == '__main__': client = ClientForDataApi( ak = "*",#替换为您的ak sk = "*",#替换为您的sk host = "api-vikingdb.vikingdb.cn-beijing.volces.com",#替换为您所在的域名 ) req_method = "POST" req_params = None req_path = "/api/vikingdb/data/search/vector" req_body = { "collection_name": "test_coll", "index_name": "idx_1", "dense_vector": [0.1243, -0.344345, 0.43232, ......],#查询的向量 "limit": 2 } result = client.do_req(req_method=req_method, req_path=req_path, req_params=req_params, req_body=req_body) print("req http status code: ", result.status_code) print("req result: \n", result.text)