- 使用深度学习模型,如CNN或RNN,对手部特征进行训练和分类,以判断手的方向。
- 基于手部关键点(keypoints)的位置和方向,计算手的方向。可以使用OpenPose等姿态估计库来获取手部关键点,并通过计算角度值来确定手的方向。
- 在图像中检测手掌的中心和手指的末端,然后使用三角形的几何知识来计算手的方向。
以下是使用OpenCV和Python实现的示例代码:
import cv2
import numpy as np
# load hand detection model
hand_cascade = cv2.CascadeClassifier('hand.xml')
# load OpenPose model
net = cv2.dnn.readNetFromTensorflow('pose_estimation.pb')
# initialize video capture
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
if not ret:
break
# detect hand region
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
hands = hand_cascade.detectMultiScale(gray, 1.1, 5)
# detect hand keypoints
blob = cv2.dnn.blobFromImage(frame, 1/255., (368, 368), (0, 0, 0), swapRB=True, crop=False)
net.setInput(blob)
out = net.forward()
h, w = frame.shape[:2]
points = []
for i in range(21):
prob_map = out[0, i, :, :]
min_val, prob, min_loc, point = cv2.minMaxLoc(prob_map)
x = int(point[0] * w)
y = int(point[1] * h)
if prob > 0.1:
points.append((x, y))
else:
points.append(None)
# calculate hand direction
if len(hands) > 0:
x1, y1, w1, h1 = hands[0]
cv2.rectangle(frame, (x1, y1), (x1+w1, y1+h1), (0, 0, 255), 2)
center = (x1+w1//2, y1+h1//2)
if points[0] and points[5] and points[17]:
vec1 = (points[0][0] - center[0], points[0][1] - center[1])
vec