GPU-部署ChatGLM-6B模型ChatGLM-6B使用了和ChatGLM相同的技术,针对中文问答和对话进行了优化。经过约1T标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62亿参数的ChatGLM-6B已经能生成相当符合人类偏好的回答。 软件要求注意 部署ChatGLM-6B语言模型时,需保证CUDA版本 ≥ 11.4。 NVIDIA驱动:GPU驱动:用来驱动NVIDIA GPU卡的程序。本文以535.86.10为例。 CUDA:使GPU能够解决复杂计算问题的计算平台。本文以CUDA 12.2为例。...
GPU服务器使用前言GPU云服务器(GPU Compute service)是提供 GPU 算力的弹性计算服务,拥有超强的计算能力,能高效服务于机器学习、科学计算、图形处理、视频编解码等多种场景,本文将介绍如何创建并使用GPU云服务器。 关于实验 预计... 步骤2:安装CUDA Toolkit具体安装步骤请参英伟达CUDA安装说明 步骤3:安装GPU_BURNGPU_BURN下载以及使用方法参考文档GPU_BURN下载以及使用方法 安装GPU_BURN,使用如下命令。 bash tar zxvf gpu_burn-1.1.tar.gz 编辑...
GPU-部署NGC环境NGC介绍NGC(NVIDIA GPU CLOUD)是NVIDIA开发的一套深度学习容器库,具有强大的性能和良好的灵活性,可以帮助科学家和研究人员快速构建、训练和部署神经网络模型。NGC官网提供了当前主流深度学习框架的镜像,例如Caffe、TensorFlow、Theano、Torch等。 软件版本操作系统:本文以Ubuntu 18.04为例。 NVIDIA驱动:GPU驱动:用来驱动NVIDIA GPU卡的程序。本文以470.57.02为例。 CUDA:使GPU能够解决复杂计算问题的计算平台。本文以CUDA 11.4...
NVIDIA驱动安装指引即调用GPU云服务器上的GPU卡获得通用计算能力,适用于深度学习、推理、AI等场景。您可以配合CUDA、cuDNN库更高效的使用GPU卡。 免费 GRID驱动 用于获得GPU卡的图形加速能力,适用于OpenGL等图形计算的场景。 需购买NVIDIA GRID License 公共镜像安装GPU驱动常规版镜像后台自动安装GPU驱动您可以在创建GPU实例时,选择常规版的Linux或veLinux镜像,并勾选“后台自动安装GPU驱动”(默认勾选),系统将自动安装默认版本的GPU驱动、CUDA和c...
在GPU实例中安装配置dcgm-exporter> 测试环境:VeLinux 1.0## 创建并连接GPU实例## 安装CUDA驱动* 下载并安装CUDA依次执行以下命令,完成CUDA的下载。```javascriptnvidia-smi //查看该实例驱动信息wget https://developer.download.nvidia.com/compute/cuda/11.4.1/local_installers/cuda_11.4.1_470.57.02_linux.run //下载对应版本CUDAsudo sh cuda_11.4.1_470.57.02_linux.run //完成CUDA安装nvidia-smi //安装后,再次执行该命令查看驱动信息,确保...
GPU-部署基于DeepSpeed-Chat的行业大模型以及评估和部署。微调的优点在于节省时间和资源,提高性能,适用于数据受限或计算资源有限的情况。 通过在特定领域的数据上进行微调,模型可以逐渐学习到特定领域的特征和模式,从而提高在该领域的性能和泛化能力。 软件要求CUDA:使GPU能够解决复杂计算问题的计算平台。本文以11.4.152为例。 Python:编程语言,并提供机器学习库Numpy等。本文以3.8.10为例。 DeepSpeed:大模型训练工具。本文以0.10.2为例。 Tensorboard:机器学习实验可...
Spark on GPU 最佳实践提供了 GPU 机型,同时支持了 Spark Rapids。您可以在开通集群的时候选择该机型,同时做一下简单的配置即可使用 Spark Rapids。 2 使用限制Spark Rapids 支持了大部分 DQL 算子,但并没有完全支持。当遇到不支持的算子时,Spark Rapids 会回退到原生算子。 Spark Rapids 比较适合高散列度的 join、aggregation、window、sort,以及 udf 包含 cuda 计算、编码计算等场景,不太适合用于小数据量、重 io(包括 shuffle)、GPU 卡内存比较小...