GPU-部署NGC环境NVIDIA驱动:GPU驱动:用来驱动NVIDIA GPU卡的程序。本文以470.57.02为例。 CUDA:使GPU能够解决复杂计算问题的计算平台。本文以CUDA 11.4为例。 CUDNN:深度神经网络库,用于实现高性能GPU加速。本文以8.2.4.15为例。 TensorFlow:深度学习框架。 前提条件 您已购买Linux实例,并勾选“后台自动安装GPU驱动”,即可使实例在启动时自动安装符合上述版本的NVIDIA驱动,从创建到驱动安装完成总耗时约 15 到 20 分钟,请耐心等待。具体操作请...
GPU-部署ChatGLM-6B模型为您介绍如何在GPU云服务器上部署ChatGLM-6B大语言模型。 软件要求注意 部署ChatGLM-6B语言模型时,需保证CUDA版本 ≥ 11.4。 NVIDIA驱动:GPU驱动:用来驱动NVIDIA GPU卡的程序。本文以535.86.10为例。 CUDA:使GPU能够解决复杂计算问题的计算平台。本文以CUDA 12.2为例。 CUDNN:深度神经网络库,用于实现高性能GPU加速。本文以8.5.0.96为例。 运行环境:Transformers:一种神经网络架构,用于语言建模、文本生成和机器翻译等任务。本...
GPU-部署Baichuan大语言模型为您介绍如何在GPU云服务器上部署Baichuan大语言模型。 软件要求注意 部署Baichuan大语言模型时,需保证CUDA版本 ≥ 11.8。 NVIDIA驱动:GPU驱动:用来驱动NVIDIA GPU卡的程序。本文以535.86.10为例。 CUDA:使GPU能够解决复杂计算问题的计算平台。本文以CUDA 12.2为例。 CUDNN:深度神经网络库,用于实现高性能GPU加速。本文以8.5.0.96为例。 运行环境:Transformers:一种神经网络架构,用于语言建模、文本生成和机器翻译等任务。深度...
在GPU实例中安装配置dcgm-exporter> 测试环境:VeLinux 1.0## 创建并连接GPU实例## 安装CUDA驱动* 下载并安装CUDA依次执行以下命令,完成CUDA的下载。```javascriptnvidia-smi //查看该实例驱动信息wget https://developer.download.nvidia.com/compute/cuda/11.4.1/local_installers/cuda_11.4.1_470.57.02_linux.run //下载对应版本CUDAsudo sh cuda_11.4.1_470.57.02_linux.run //完成CUDA安装nvidia-smi //安装后,再次执行该命令查看驱动信息,确保...
NVIDIA驱动安装指引当前火山引擎提供的GPU实例均为计算型,即GPU卡直通型,实例必须安装GPU驱动来驱动物理GPU卡,以获得GPU卡的能力。 GPU实例当前支持安装以下两种NVIDIA驱动,建议您安装最新版本的驱动: 驱动类型 驱动介绍 收费情况 GPU驱动 用于驱动物理GPU卡,即调用GPU云服务器上的GPU卡获得通用计算能力,适用于深度学习、推理、AI等场景。您可以配合CUDA、cuDNN库更高效的使用GPU卡。 免费 GRID驱动 用于获得GPU卡的图形加速能力,适用于OpenGL等图...
Spark on GPU 最佳实践提供了 GPU 机型,同时支持了 Spark Rapids。您可以在开通集群的时候选择该机型,同时做一下简单的配置即可使用 Spark Rapids。 2 使用限制Spark Rapids 支持了大部分 DQL 算子,但并没有完全支持。当遇到不支持的算子时,Spark Rapids 会回退到原生算子。 Spark Rapids 比较适合高散列度的 join、aggregation、window、sort,以及 udf 包含 cuda 计算、编码计算等场景,不太适合用于小数据量、重 io(包括 shuffle)、GPU 卡内存比较小...
GPU-部署基于DeepSpeed-Chat的行业大模型适用于数据受限或计算资源有限的情况。 通过在特定领域的数据上进行微调,模型可以逐渐学习到特定领域的特征和模式,从而提高在该领域的性能和泛化能力。 操作场景本文以搭载了一张A100显卡的ecs.pni2.3xlarge为例,为您介绍如何在GPU云服务器上进行DeepSpeed-Chat模型的微调训练。 软件要求CUDA:使GPU能够解决复杂计算问题的计算平台。本文以11.4.152为例。 Python:编程语言,并提供机器学习库Numpy等。本文以3.8.10为例。 DeepSpee...