You need to enable JavaScript to run this app.
最新活动
产品
解决方案
定价
生态与合作
支持与服务
开发者
了解我们

gpu进行模型推理的优势

GPU云服务器是提供 GPU 算力的弹性计算服务,适用于机器学习、视觉处理等多种场景

DigiCert证书免费领取

1年内申请20本免费证书,适用网站测试
0.00/首年0.00/首年
新老同享限领20本
立即领取

正式版证书全场首本5折

适用个人与商业网站,分钟级签发
189.00/首年起378.00/首年起
新人专享首本特惠
立即购买

域名注册服务

cn/com热门域名1元起,实名认证即享
1.00/首年起32.00/首年起
新客专享限购1个
立即购买

gpu进行模型推理的优势-优选内容

字节跳动基于 Ray 的大规模离线推理
独占一个 GPU ,小的层就多个挤在一个 GPU 上。按权重切分就是将模型的同一层,把权重切开放到不同的 GPU 上,比如同样是 GPU0、GPU1两个 GPU,Tensor Parallelism 模式会将 L0 的一部分权重 A0 放到 GPU0 上,另外一部分权重 A1 放在 GPU1 上,在推理的过程中,通过矩阵运算得到最终的结果。除了这两种方式以外,也有一些更复杂的切分方式,如将这两种方式进行结合的混合方式,或 Zero 的切分方式。进行模型切分具有以下几点优势:- ...
GPU-基于Diffusers和Gradio搭建SDXL推理应用
简单方便的使用各种扩散模型生成图像、音频,也可以非常方便的使用各种噪声调度器,用于调节在模型推理中的速度和质量。目前,Diffusers已经支持SDXL 1.0的base和refiner模型,可生成1024 × 1024分辨率的图片。 软件要求GPU驱动:用来驱动NVIDIA GPU卡的程序。本文以470.57.02为例。 Pytorch:开源的Python机器学习库,实现强大的GPU加速的同时还支持动态神经网络。本文以2.0.0为例。Pytorch使用CUDA进行GPU加速时,在GPU驱动已经安装的...
GPU-部署Baichuan大语言模型
本文以搭载了一张A10显卡的ecs.gni2.3xlarge实例为例,介绍如何在GPU云服务器上部署Baichuan大语言模型。 背景信息Baichuan-13B是包含130亿参数的开源可商用的大语言模型,在知识问答、聊天、逻辑推理、总结摘要等场景具有良好的表现,在权威的中文和英文 Benchmark 评测上均取得很好的效果。模型支持FP16、INT8、INT4三种精度,可以在GPU实例上部署并搭建推理应用。该模型GPU显存的需求如下: 精度 显存需求 推荐实例规格 GPU显卡类...
GPU计算型
概述GPU计算型实例基于多种NVIDIA Tesla显卡,在各类推理场景及分子计算场景下提供高性价比。适用于深度学习及AI推理训练,如图像处理、语音识别等人工智能算法的训练应用。 说明 您可以在价格计算器页面,查看实例的价格及其配置项(系统盘、数据盘、公网IP等)费用。价格计算器为参考价格,具体请以云服务器控制台实际下单结果为准。 如果您发现实例规格不能满足或者超出应用需求时,您可以随时变更实例规格(升降配)或使用其他类型的实...

gpu进行模型推理的优势-相关内容

GPU-部署基于DeepSpeed-Chat的行业大模型
模型微调 模型微调是一种迁移学习技术,通过在预训练模型的基础上进行额外训练,使其适应特定任务或领域。这一过程包括选择预训练模型,准备目标任务的数据,调整模型结构,进行微调训练,以及评估和部署。微调的优点在于节省时间和资源,提高性能,适用于数据受限或计算资源有限的情况。 通过在特定领域的数据上进行微调,模型可以逐渐学习到特定领域的特征和模式,从而提高在该领域的性能和泛化能力。 软件要求CUDA:使GPU能够解决复杂计...
【图说产品】初见GPU云服务器 - 专业图像处理、人工智能算法训练及推理的“加速器”
GPU云服务器(GPUCloudComputing,GPU)是提供GPU算力的弹性计算服务,具有高效稳定的计算能力,适用于生成式AI、自动驾驶、图像处理、科学计算等多种应用场景。![picture.image](https://p3-volc-community-sign.byteimg.com/tos-cn-i-tlddhu82om/3d0e4040a17b446d821de40d5b061cfd~tplv-tlddhu82om-image.image?=&rk3s=8031ce6d&x-expires=1702052410&x-signature=B8MqkVaJfg%2FDo5AIl%2Fk4qkQd4XE%3D)
应用场景
GPU云服务器适用于需要进行大规模并行计算的场景,例如AI深度学习、图像/视频渲染、科学计算等场景。 AI深度学习模型训练场景V100、A100、A30等类型的GPU显卡适用于AI模型训练场景,提供了大显存和高速访问能力,并叠加NVLink多卡互连,为多卡并行提供了超强计算能力。 应用推理场景T4、A10等类型的GPU显卡为AI推理提供了高效能比的加速能力,广泛应用于图像识别、语言翻译场景。 图像/视频渲染异构GPU渲染型实例提供高性能的3D图形虚...
Serverless GPU 概述
也无需关心 GPU 资源使用率不均衡导致的 GPU 长时间处于空闲状态,只需为实际使用的 GPU 付费。 说明 【邀测·申请试用】Serverless GPU 当前为邀测功能,如需体验,请 提交工单 申请或联系客户经理申请。 使用场景函数服务当前提供 CPU 实例和 GPU 实例两种选择。传统函数使用 CPU 实例,可支持基础计算场景。GPU 函数使用 GPU 实例,擅长执行高度线程化的并行处理任务(大规模计算任务),适用于 AI 模型推理、AI 模型训练、音视频加速...
GPU 计算型
弹性容器实例的 GPU 计算型规格,基于多种 NVIDIA Tesla 显卡,在各类推理场景及分子计算场景下提供高性价比使用体验。 请参考下方介绍选择符合您实际业务需求的 VCI GPU 计算型实例规格。 规格族 描述 GPU 计算型 ini2(vci.ini2) (限量提供)A30 显卡,具有强大的双精度浮点运算能力和较高的深度学习推理吞吐量,适用于大规模 AI 推理、深度学习小规模训练等场景,但不支持图片或视频渲染。 GPU 计算型 gni2(vci.gni2) (限量提供)A10 ...
基于 Ray 的大规模离线推理
> 本文整理自字节跳动基础架构资深研发工程师王万兴在火山引擎开发者社区 Meetup 中的分享。大模型离线推理,是指在具有数十亿或数千亿参数的大规模模型上进行分布式推理的过程。相较于常规模型推理,在模型切分、数据处理和数据流、提升 GPU 利用率方面面临了很大挑战。本次分享将介绍如何利用 Ray 及云原生优势助力大模型离线推理。# 一、大模型离线推理## 特点介绍![picture.image](https://p3-volc-community-sign.byte...
GPU在Kubernetes中的使用与管理 | 社区征文
## 前言随着人工智能与机器学习技术的快速发展,在Kubernetes上运行模型训练、图像处理类程序的需求日益增加,而实现这类需求的基础,就是Kubernetes对GPU等硬件加速设备的支持与管理。在本文中我们就说一下在Kubernetes中启动并运行GPU程序的注意事项。## Kubernetes对GPU支持的不足之处我们知道Kubernetes可以实现对宿主机的CPU、内存、网络实现精细化的控制,但是到本文书写为止,Kubernetes尚未实现像管理CPU那样来管理GPU,...

体验中心

通用文字识别

OCR
对图片中的文字进行检测和识别,支持汉语、英语等语种
体验demo

白皮书

一图详解大模型
浓缩大模型架构,厘清生产和应用链路关系
立即获取

最新活动

火山引擎·增长动力

助力企业快速增长
了解详情

数据智能VeDI

易用的高性能大数据产品家族
了解详情

新用户特惠专场

云服务器9.9元限量秒杀
查看活动

一键开启云上增长新空间

立即咨询