保姆级人工智能学习成长路径|社区征文比如使用深度学习框架(Tensorflow或者Pytorch)完成简单的分类或者回归的任务。然后再逐渐深入,从而加深对神经网络和深度学习的理解。# 4. 第四阶段:细分领域深入学习 再进一步就是选择细分领域进行学习了,相对主流的几大方向和细分方向分别是:- 计算机视觉(CV):图像分类、目标检测、关键点检测(如人体姿态估计)、图像分割、OCR等。主要提取的是颜色、形状和纹理等特征。- 自然语言处理(NLP):文本分类、命名实体识别、...
GPU-部署ChatGLM-6B模型本文以535.86.10为例。 CUDA:使GPU能够解决复杂计算问题的计算平台。本文以CUDA 12.2为例。 CUDNN:深度神经网络库,用于实现高性能GPU加速。本文以8.5.0.96为例。 运行环境:Transformers:一种神经网络架构,用于语言建模、文本生成和机器翻译等任务。本文以4.30.2为例。 Pytorch:开源的Python机器学习库,实现强大的GPU加速的同时还支持动态神经网络。本文以2.0.1为例。 Anaconda:获取包且对包能够进行管理的工具,包含了Conda、Pyt...
火山引擎大模型训练框架 veGiantModel 开源,性能最高提升 6.9 倍!基于 PyTorch 框架,veGiantModel 是以 Megatron 和 DeepSpeed 为基础的高性能大模型训练框架。其特点包括:- 同时支持数据并行、算子切分、流水线并行 3 种分布式并行策略,同时支持自动化和定制化的并行策略- ... veGiantModel 对网络带宽要求低:veGiantModel 在带宽变化对吞吐的影响相对最小 (<10%),而 DeepSpeed(ZeRO) 是对带宽要求最高的,最高可达将近 5 倍的差距。## 原因解析veGiantModel 为什么比 Megatron 和 Dee...
GPU-基于Diffusers和Gradio搭建SDXL推理应用Pytorch:开源的Python机器学习库,实现强大的GPU加速的同时还支持动态神经网络。本文以2.0.0为例。Pytorch使用CUDA进行GPU加速时,在GPU驱动已经安装的情况下,依然不能使用,很可能是版本不匹配的问题,请严格关注虚拟环境中CUDA与Pytorch的版本匹配情况。 Anaconda:获取包且对包能够进行管理的工具,包含了Conda、Python在内的超过180个科学包及其依赖项,用于创建Python虚拟环境。本文以Anaconda 3和Python 3.10为例。 Gradio:快速...
万字长文带你弄透Transformer原理|社区征文10.]])```了解详情。 最后我们来大致看看通过Embedding后会达到怎样的效...
功能总览资源组 机器学习平台提供【资源组】用于购买和管理资源,用户(通常是运维工程师或者负责资源购买及管理的人员)可以通过 包年包月 的方式以高性价比批量购买资源(如:10 台 Tesla-A100 的服务器),并将这部分资源池化为... PyTorchDDP、BytePS、MPI 多种分布式训练框架,用户无需关心底层机器调度和运维,上传代码和填写适量的参数即可快速发起分布式训练任务。 模型管理 机器学习平台支持用户导入模型到【模型管理】模块进行托管。在机器...
GPU-部署Baichuan大语言模型本文以535.86.10为例。 CUDA:使GPU能够解决复杂计算问题的计算平台。本文以CUDA 12.2为例。 CUDNN:深度神经网络库,用于实现高性能GPU加速。本文以8.5.0.96为例。 运行环境:Transformers:一种神经网络架构,用于语言建模、文本生成和机器翻译等任务。深度学习框架。本文以4.30.2为例。 Pytorch:开源的Python机器学习库,实现强大的GPU加速的同时还支持动态神经网络。本文以2.0.1为例。 Anaconda:获取包且对包能够进行管理的工具,包...