不依赖hadoop数据仓库-优选内容
浅谈大数据建模的主要技术:维度建模 | 社区征文
## 前言我们不管是基于 Hadoop 的数据仓库(如 Hive ),还是基于传统 MPP 架构的数据仓库(如Teradata ),抑或是基于传统 Oracle 、MySQL 、MS SQL Server 关系型数据库的数据仓库,其实都面临如下问题:- 怎么组织数据仓库中的数据?- 怎么组织才能使得数据的使用最为方便和便捷?- 怎么组织才能使得数据仓库具有良好的可扩展性和可维护性?> **Ralph Kimball 维度建模理论很好地回答和解决了上述问题。**维度建模理论和技术也是...
使用 Hive 访问 CloudFS 中的数据
Hive 是基于 Hadoop 的一个数据仓库工具,用来进行数据提取、转化、加载。本文介绍如何配置 Hive 服务来访问 CloudFS 中的数据。 前提条件 在使用 Hive 服务访问大数据文件存储服务 CloudFS 前,确保您已经完成以下准备工作: 开通大数据文件存储服务 CloudFS 并创建文件存储,获取挂载信息。详细操作请参考创建文件存储系统。 开通 E-MapReduce 服务并创建集群。详细操作请参考E-MapReduce 集群创建。 在配置 Hive 服务之前,请确认/...
元数据迁移
1 迁移和部署 Apache Hive 到火山引擎 EMR Apache Hive 是一个开源的数据仓库和分析包,它运行在 Apache Hadoop 集群之上。Hive 元存储库包含对表的描述和构成其基础的基础数据,包括分区名称和数据类型。Hive 是可以在火山引擎 E-MapReduce(简称“EMR”)上运行的服务组件之一。火山引擎 EMR 集群的 Hive 元数据可以选择内置数据库、外置数据库和 Metastore 服务三种: 内置数据库作为 Hive 元数据建议只应用于开发和测试环境。 使...
干货 |揭秘字节跳动基于 Doris 的实时数仓探索
> 火山引擎 EMR 作为一款云原生开源大数据平台产品,集成了包括 Hadoop、Spark、Flink 等引擎,并做到100%开源兼容。Doris 作为 OLAP 领域中一款极具代表性的开源组件,也被集成到了火山引擎 EMR 产品生态中。> 本文... 完成了数据的存算分离,数据弹性问题得到了解决,但元数据问题依旧存在。现在 Doris 的源数据是通过 bdb 做选主, 通过本地做数据持久化, 通过3副本做高可用,这种模式依然依赖于3节点来实现高可用. 我们希望能做一个 ...
不依赖hadoop数据仓库-相关内容
干货|揭秘字节跳动对Apache Doris 数据湖联邦分析的升级和优化
>火山引擎 EMR 作为一款云原生开源大数据平台产品,集成了包括 Hadoop、Spark、Flink 等引擎,并做到100%开源兼容。Doris 作为 OLAP 领域中一款极具代表性的开源组件,也被集成到了火山引擎 EMR 产品生态中。 > 本文... 其次介绍 Apache Doris 数据湖联邦分析的整体设计和相关特性,最后介绍 Apache Doris 在数据湖联邦分析上的未来规划。# 1. 湖仓一体架构演进回顾湖仓一体的发展史,主要经历了三个阶段。第一个阶段是数据仓库,第...
字节跳动10万节点 HDFS 集群多机房架构演进之路
# **背景**## **现状**HDFS 全称是 Hadoop Distributed File System,其本身是 Apache Hadoop 项目的一个模块,作为大数据存储的基石提供高吞吐的海量数据存储能力。自从 2006 年 4 月份发布以来,HDFS 目前依然有... DanceNN,即字节跳动自研的高性能 NameNode 实现。这 3 者构成一个分层的单向依赖关系链, DanceNN -> BookKeeper -> ZooKeeper,因此这 3 者可以独立完成双机房的容灾方案,最终在整体上呈现一个双机房容灾的 N...
9年演进史:字节跳动 10EB 级大数据存储实战
# 背景## **HDFS** **简介**HDFS 全名 Hadoop Distributed File System,是业界使用最广泛的开源分布式文件系统。原理和架构与 Google 的 GFS 基本一致。它的特点主要有以下几项:- 和本地文件系统一样的目录... 依赖于一些外部组件如 Redis,MySQL 等,会有一批无状态的 NNProxy 组成,他们提供了请求路由、Quota 限制、Tracing 能力及流量限速等能力。### **元数据层**这一层主要模块有 Name Node、ZKFC 和 BookKeeper(不同...
基于火山引擎 EMR 构建企业级数据湖仓
Presto:现在在做 Velox 的 native 引擎。 Velox 引擎现在还不太成熟,但是根据 Presto 社区的宣称,它可以达到原来 1/3 的成本。所以我们可以猜测,等价情况下可以获得 3X 的性能提升。除了以上两者,近几年火起来的 ClickHouse 和 Doris 也是 Native 化的一个表现。另外一个趋势是向量化。说到这里要提一句,Codegen 跟向量化,都是从数据仓库而不是 Hadoop 体系的产品中长出来的:Codegen 是 Hyper 提出的技术,而向量化则是 M...
干货 | 看 SparkSQL 如何支撑企业级数仓
企业数据仓库架构必然不等于一个组件,大部分企业在数仓架构实施的都是都是基于现有的部分方案,进行基于自己业务合适的方向进行部分开发与定制,从而达到一个半自研的稳态,既能跟上业务变化的速度,又不过于依赖和受限... 检索三个方向阐述了海量数据下一种新的分布式数据加工处理技术,这三个方向被雅虎 Nutch 团队实现后贡献给 Apache,也就是目前大家看到的 HDFS,MapReduce 和 HBase,形成了早期 Hadoop 的三大利器。然而这三大利器更...
数仓进阶篇@记一次BigData-OLAP分析引擎演进思考过程 | 社区征文
拥有和Hadoop一样的可扩展性、它提供了类SQL-类Hsql语法,在多用户场景下亦能拥有较高的响应速度和吞吐量,兼顾数据仓库,具有实时,批处理,多并发等优点。**Java接入:** ![image.png](https://p9-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/89fa67e29f5048288a9b4949d9d0cd24~tplv-k3u1fbpfcp-5....
ByteHouse MaterializedMySQL 增强优化
实现了基于 MySQL Binlog 机制的业务数据库实时同步功能。 这样不依赖其他数据同步工具,就能将 MySQL 整库数据实时同步到 ClickHouse,从而能基于 ClickHouse 构建实时数据仓库。 ByteHouse 是基于 ClickHouse 增强自研的云原生数据仓库,在社区版 ClickHouse 的 MaterializedMySQL 之上进行了功能增强,让数据同步更稳定,支持便捷地处理同步异常问题。# 社区版 MaterializedMySQL 简介ClickHouse 社区版通过 DDL 语...