注意 model
需替换为步骤一获取的 Endpoint ID。
curl https://ark.cn-beijing.volces.com/api/v3/chat/completions -H "Content-Type: application/json" -H "Authorization: Bearer $ARK_API_KEY" -d '{
"model": "ep-s-xxx",
"messages": [
{"role": "system","content": "你是人工智能助手."},
{"role": "user","content": "你好"}
]
}'
- 请按如下命令安装环境
pip install --upgrade "openai>=1.0"
- 请参考如下示例代码进行调用
import os
from openai import OpenAI
# 请确保您已将 API Key 存储在环境变量 ARK_API_KEY 中
# 初始化Openai客户端,从环境变量中读取您的API Key
client = OpenAI(
# 此为默认路径,您可根据业务所在地域进行配置
base_url="https://ark.cn-beijing.volces.com/api/v3",
# 从环境变量中获取您的 API Key
api_key=os.environ.get("ARK_API_KEY"),
)
# Non-streaming:
print("----- standard request -----")
completion = client.chat.completions.create(
# 替换为您步骤一获取的 MLP Endpoint ID
model="ep-s-xxx",
messages=[
{"role": "system", "content": "你是人工智能助手"},
{"role": "user", "content": "你好"},
],
)
print(completion.choices[0].message.content)
# Streaming:
print("----- streaming request -----")
stream = client.chat.completions.create(
# 替换为您步骤一获取的 MLP Endpoint ID
model="ep-s-xxx",
messages=[
{"role": "system", "content": "你是人工智能助手"},
{"role": "user", "content": "你好"},
],
# 响应内容是否流式返回
stream=True,
)
for chunk in stream:
if not chunk.choices:
continue
print(chunk.choices[0].delta.content, end="")
print()
- 请按如下命令安装环境
pip install --upgrade "volcengine-python-sdk[ark]"
- 请参考如下示例代码进行调用
import os
from volcenginesdkarkruntime import Ark
# 请确保您已将 API Key 存储在环境变量 ARK_API_KEY 中
# 初始化Ark客户端,从环境变量中读取您的API Key
client = Ark(
# 此为默认路径,您可根据业务所在地域进行配置
base_url="https://ark.cn-beijing.volces.com/api/v3",
# 从环境变量中获取您的 API Key。此为默认方式,您可根据需要进行修改
api_key=os.environ.get("ARK_API_KEY"),
)
# Non-streaming:
print("----- standard request -----")
completion = client.chat.completions.create(
# 替换为您步骤一获取的 MLP Endpoint ID
model="ep-s-xxx",
messages=[
{"role": "system", "content": "你是人工智能助手."},
{"role": "user", "content": "你好"},
],
)
print(completion.choices[0].message.content)
# Streaming:
print("----- streaming request -----")
stream = client.chat.completions.create(
# 替换为您步骤一获取的 MLP Endpoint ID
model="ep-s-xxx",
messages=[
{"role": "system", "content": "你是人工智能助手."},
{"role": "user", "content": "你好"},
],
# 响应内容是否流式返回
stream=True,
)
for chunk in stream:
if not chunk.choices:
continue
print(chunk.choices[0].delta.content, end="")
print()