同步物化视图保存了经常使用的查询,以便在查询时直接复用,实现查询加速。本文介绍了同步物化视图的语法及不同场景下同步物化视图的使用方法。
同步物化视图的本质类似一种触发器,当基表有数据写入,会触发视图执行定义的 SQL,写入另外一张表,更新粒度是导入基表的数据块,基表与视图目的表同时写入成功事务才能结束,由此可以看出同步视图会影响基表的导入性能,而且只能支持单表的场景,对于基表通过 merge 进行数据合并的场景也不能支持,因为基表变化不能传导视图目的表,不能支持类似 unique table 作为基表。
目前在 ByteHouse 根据物化视图的用途分为如下使用场景:
--创建同步视图 CREATE MATERIALIZED VIEW [IF NOT EXISTS] [database.]<mv_name> [TO [database.]<target_name>] AS <query_statement> [SETTINGS <mv_query_settings>]; --手动刷新视图 REFRESH MATERIALIZED VIEW db_name.mv_name [PARTITION partition_name] [WHERE predicate_expr] [ASYNC | SYNC];
如果存在如上要求,推荐使用异步物化视图。
下面以一个行为分析系统的事件表来说明上述视图的使用方法。
ByteHouse 云数仓版 2.2 及以上版本支持此功能。
--创建数据库 create database mv; --数据源表 CREATE TABLE mv.events( app_id UInt32, server_time UInt64, event_name String, uid UInt64, cost UInt64, duration UInt64, event_date Date ) ENGINE = CnchMergeTree PARTITION BY toDate(event_date) ORDER BY (app_id, uid, event_name);
Aggregate 聚合视图是物化视图最为常用的一种场景,基于特定的聚合查询对源数据抽取存为物化视图,由于聚合查询已经聚合为中间数据状态,查询视图会减少聚合计算,提高查询性能,后续的查询能命中视图,引擎对原始查询进行改写,直接查询聚合视图表。下面看具体的场景
--视图目标表 CREATE TABLE mv.events_aggregation ( app_id UInt32, event_name String, event_date Date, sum_cost AggregateFunction(sum, UInt64), max_duration AggregateFunction(max, UInt64) ) ENGINE = CnchAggregatingMergeTree() PARTITION BY toDate(event_date) ORDER BY (app_id, event_name, event_date); --视图定义 CREATE MATERIALIZED VIEW mv.events_aggregate_view to mv.events_aggregation (app_id UInt32, event_name String, event_date Date, sum_cost AggregateFunction(sum, UInt64), max_duration AggregateFunction(max, UInt64)) AS SELECT app_id, event_name, event_date, sumState(cost) AS sum_cost, maxState(duration) AS max_duration FROM mv.events GROUP BY app_id, event_name, event_date;
---明细表 insert into table mv.events(app_id, server_time, event_name, uid, cost, duration, event_date) values (1, 1642149961, 'show', 121245, 3454, 64, '2022-06-14'); insert into table mv.events(app_id, server_time, event_name, uid, cost, duration, event_date) values (2, 1642149961 , 'send', 2345, 476, 64, '2022-06-14'); insert into table mv.events(app_id, server_time, event_name, uid, cost, duration, event_date) values (3, 1642150683, 'show', 544545, 87, 5434, '2022-06-14'); insert into table mv.events(app_id, server_time, event_name, uid, cost, duration, event_date) values (3, 1642150683, 'show', 544545, 930, 232, '2022-06-14'); insert into table mv.events(app_id, server_time, event_name, uid, cost, duration, event_date) values (4, 1642150683, 'slide', 234545, 123, 98, '2022-06-14'); insert into table mv.events(app_id, server_time, event_name, uid, cost, duration, event_date) values (5, 1642150683, 'click', 131312, 2644, 26, '2022-06-14');
在业务频繁迭代的场景,经常需要使用非主键过滤条件进行查询,但是主表的主键顺序又不能修改,基于这种需求,可以定义物化视图来修改主键顺序,根据业务需求裁切部分列或者根据某些条件过滤数据,来产出视图。
--视图目标表 CREATE TABLE mv.events_normal ( app_id UInt32, event_name String, event_date Date, uid UInt64, cost UInt64 ) ENGINE = CnchMergeTree() PARTITION BY toDate(event_date) ORDER BY (uid, event_name); --视图定义 CREATE MATERIALIZED VIEW mv.events_normal_view to mv.events_normal (app_id UInt32, event_name String, event_date Date, uid UInt64, cost UInt64) AS SELECT app_id, event_name, event_date, uid, cost FROM mv.events;
实时消费以 Kafka 的消费为例,视图的 SQL 定义需要从 consumer 获取数据,可以全部获取作为明细表,可以进行聚合,过滤,投影等操作,可以是并联视图,或者串联视图。
--实时消费 consumer 表定义 CREATE TABLE mv.events_consumer ( app_id UInt32, server_time UInt64, event_name String, uid UInt64, cost UInt64, duration UInt64, event_date Date ) ENGINE = CnchKafka() SETTINGS kafka_broker_list = 'XXXX:9092', kafka_topic_list = 'ch_qa_cnch_staging_yg', kafka_group_name = 'events_consumer_group', kafka_format = 'JSONEachRow', kafka_row_delimiter = '\n', kafka_num_consumers = 5, kafka_max_block_size = 65536; ---明细表视图定义 CREATE MATERIALIZED VIEW mv.events_real_all_view to mv.events ( app_id UInt32, server_time UInt64, event_name String, uid UInt64, cost UInt64, duration UInt64, event_date Date ) AS SELECT * FROM mv.events_consumer; ---聚合表视图定义 CREATE MATERIALIZED VIEW mv.events_real_aggregate_view to mv.events_aggregation (app_id UInt32, event_name String, event_date Date, sum_cost AggregateFunction(sum, UInt64), max_duration AggregateFunction(max, UInt64)) AS SELECT app_id, event_name, event_date, sumState(cost) AS sum_cost, maxState(duration) AS max_duration FROM mv.events_consumer GROUP BY app_id, event_name, event_date; --normal 表实时消费表 CREATE MATERIALIZED VIEW mv.events_real_normal_view to mv.events_normal (app_id UInt32, event_name String, event_date Date, sum_cost AggregateFunction(sum, UInt64), max_duration AggregateFunction(max, UInt64)) AS SELECT app_id, event_name, event_date, uid, cost FROM mv.events_consumer where uid = 5434;