GPU-基于Diffusers和Gradio搭建SDXL推理应用提供Diffusion推理训练全流程,简单方便的使用各种扩散模型生成图像、音频,也可以非常方便的使用各种噪声调度器,用于调节在模型推理中的速度和质量。目前,Diffusers已经支持SDXL 1.0的base和refiner模型,可生成1024... Pytorch:开源的Python机器学习库,实现强大的GPU加速的同时还支持动态神经网络。本文以2.0.0为例。Pytorch使用CUDA进行GPU加速时,在GPU驱动已经安装的情况下,依然不能使用,很可能是版本不匹配的问题,请严格关注虚拟...
发起单机 / 分布式训练任务【自定义训练】除了支持单机训练任务之外,还预置了 TensorFlowPS、PyTorchDDP、BytePS 等多种分布式训练范式的配置模板,用户简单配置训练角色的数量及实例规格后即可发起大规模的分布式训练任务。 相关概念 自定义训练 资源组 / 实例 TensorFlowPS PyTorchDDP BytePS MPI 使用前提 使用预付费(专有)队列时,拥有 >= 1 个预付费队列的使用权限。 操作步骤 平台支持通过控制台(Web 页面)和命令行工具发起训练任务,下文将分别介绍两种...
火山引擎大规模机器学习平台架构设计与应用实践繁多的分布式训练框架:火山引擎机器学习平台的用户很多,不同的任务有不同的分布式训练框架,包括数据并行的框架(TensorflowPS、Horovod、PyTorchDDP、BytePS 等),模型并行的框架(Megatron-LM、DeepSpeed、veGiantModel 等),HPC 框架(Slurm、MPI 等)以及其他框架(SparkML、Ray 等)。不同的训练框架有各自的调度和资源要求,这就给底层基础设施带来一些挑战。#### 存储侧存储可以认为是机器学习的刚需,在存储侧面临的挑战也很大:...
预置镜像列表机器学习开发中镜像用于提供开发所需的运行环境,机器学习平台为用户提供了包括 Python、CUDA、PyTorch、TensorFlow、BytePS 等多种依赖的预置镜像供用户直接使用。 相关概念 镜像 预置镜像列表 PythonPython 是目前... LightGBM 训练的树模型。平台预置了一系列的 Triton 镜像供用户灵活选择,从而实现高性能的模型推理。 不同版本的镜像包含的 Triton Inference Server 版本不同,对应支持模型框架的版本也不相同,用户需要按需选择镜...
基于交换机信息的分布式通信优化常见的大模型训练方式有数据并行 / 模型并行 / 流水线并行等,不同的并行方式实际是将参与训练的实例进行分组。同一组内的实例间通信频率(流量)远高于组间的实例进行通信的频率(流量),因此在任务调度时应该尽量地把... RACK_RANK_INDEX:PyTorchDDP、MPI 框架的任务会注入按照交换机 hash_id 排序后的 worker index 环境变量,同时保证 worker0 的 index=0。训练中可使用该环境变量来指定 node_rank 即可减少 allreduce 等场景跨交换...
发起 BytePS 分布式训练BytePS 是一种自研的分布式训练通信框架,目前已经在GitHub上开源。主要特点如下: 同时支持 TF、PyTorch 以及 MXNet 三个计算框架。 高性能:对于通信密集型任务,性能显著超越同等条件下的 Horovod、PyTorch DDP。 目前落地场景包括 BERT、GAN 等大规模训练。 基本流程 用户在【自定义训练】模块创建一个训练任务时选择实例配置为 BytePS,按需配置各种训练角色并提交任务表单进入任务创建环节。有如下几种训练角色:server:管理参数...
字节跳动正式开源分布式训练调度框架 Primus模型及训练模型所需的数据量越来越大,也都趋向于通过分布式训练实现。而算法工程师通常需要对这些分布式框架涉及到的底层文件存储和调度系统有较深的理解,才能够快速批量开启模型训练,保证资源利用率。目前业界有很多类似的框架,如 TonY、TensorFlowOnSpark,Kubeflow 中的 Training Operators 等,但这些框架或多或少存在某些问题,如与固定的机器学习框架( Tensorflow,Pytorch )耦合需要写明例如 PS、Worker 等角色,容错和弹性调...