You need to enable JavaScript to run this app.
最新活动
产品
解决方案
定价
生态与合作
支持与服务
开发者
了解我们

svhntensorflow

GPU云服务器是提供 GPU 算力的弹性计算服务,适用于机器学习、视觉处理等多种场景

DigiCert证书免费领取

1年内申请20本免费证书,适用网站测试
0.00/首年0.00/首年
新老同享限领20本
立即领取

正式版证书全场首本5折

适用个人与商业网站,分钟级签发
189.00/首年起378.00/首年起
新人专享首本特惠
立即购买

域名注册服务

cn/com热门域名1元起,实名认证即享
1.00/首年起32.00/首年起
新客专享限购1个
立即购买

svhntensorflow-优选内容

我的AI学习之路----拥抱Tensorflow 拥抱未来|社区征文
接下来大家跟随我的脚步来一步步走进我和TensorFlow的世界吧,去了解和使用它~相信你也一定可以爱上TensorFlow!# 一、TensorFlow的简介TensorFlow是由谷歌人工智能团队谷歌大脑开发和维护的深度学习平台,目前人工智能领域主流的开发平台,在全球有着广泛的用户群体。![image.png](https://p6-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/a97aad2c5af643ddb33922af406f24a2~tplv-k3u1fbpfcp-5.jpeg?)## 1.TensorFlow特点优秀的...
Lab 6:基于容器服务VKE运行Tensorflow实验
# 实验说明本实验基于火山引擎容器服务VKE进行,其中涉及到其他产品,如托管Prometheus进行监控,需要前置创建好VMP的workspace,使用TOS(后续实验考虑替换为vePFS)存储数据集,也需要提前创建好TOS Bucket。本示例将训练一个神经网络模型,对运动鞋和衬衫等服装图像进行分类。本实验将介绍如何在容器服务VKE中运行TensorFlow,并查看GPU监控情况。# Task 1:配置对象存储TOS1. 配置对象存储TOS。![picture.image](https://p6-...
【MindStudio训练营第一季】MindStudio 高精度对比随笔
# MindStudio精度对比简介> 原因:训练场景下,迁移原始网络 (如TensorFlow、PyTorch) ,用于NPU上执行训练,网络迁移可能会造成自有实现的算子运算结果与用原生标准算子运算结果存在偏差。推理场景下, ATC模型转换过程对模型进行优化,包括算子消除、算子融合算子拆分,这些优化也可能会造成自有实现的算子运算结果与原生标准算子(如TensorFlow、ONNX、 Caffe ) 运算结果存在偏差。为了帮助开发人员快速解决算子精度问题,需要提...
字节跳动正式开源分布式训练调度框架 Primus
> 项目地址:https://github.com/bytedance/primus 随着机器学习的发展,模型及训练模型所需的数据量越来越大,也都趋向于通过分布式训练实现。而算法工程师通常需要对这些分布式框架涉及到的底层文件存储和调度系统有较深的理解,才能够快速批量开启模型训练,保证资源利用率。目前业界有很多类似的框架,如 TonY、TensorFlowOnSpark,Kubeflow 中的 Training Operators 等,但这些框架或多或少存在某些问题,如与固定的机器学习...

svhntensorflow-相关内容

发起单机 / 分布式训练任务
【自定义训练】除了支持单机训练任务之外,还预置了 TensorFlowPS、PyTorchDDP、BytePS 等多种分布式训练范式的配置模板,用户简单配置训练角色的数量及实例规格后即可发起大规模的分布式训练任务。 相关概念 自定义训练 资源组 / 实例 TensorFlowPS PyTorchDDP BytePS MPI 使用前提 使用预付费(专有)队列时,拥有 >= 1 个预付费队列的使用权限。 操作步骤 平台支持通过控制台(Web 页面)和命令行工具发起训练任务,下文将分别介绍两种...
GPU-部署NGC环境
TensorFlow、Theano、Torch等。 操作场景 本文介绍如何在Linux实例上基于NGC部署TensorFlow。 软件版本 操作系统:本文以Ubuntu 18.04为例。 NVIDIA驱动:GPU驱动:用来驱动NVIDIA GPU卡的程序。本文以470.57.02为例。... 如果您需要使用HTTPS或DIGITS 6服务,则需要在实例安全组入方向添加如下规则:放行端口TCP 443(用于HTTPS)或TCP 5000(用于DIGITS 6)端口。 步骤一:查看驱动版本已安装成功 远程连接云服务器并登录,具体操作请参考登...
从100w核到450w核:字节跳动超大规模云原生离线训练实践
离线训练 Zion 框架是基于 Hadoop Streaming 架构在深度学习场景下的深度定制,每个训练作业对应一个 Hadoop YARN 上的 Zion 任务,具有(PS-Worker)架构分布式训练器、多数据格式多数据源混合训练、HDFS 样本读取、训练训练进度 Checkpoint 功能。(PS-Worker)架构分布式训练器基于 Google 的 Tensorflow 框架深度定制,主要采用 Worker-PS 架构进行训练。此架构分为 PS 端与 Worker 端两个部分——其中 PS(ParameterServer) 是参数...
图谱构建的基石: 实体关系抽取总结与实践|社区征文
半结构化(如JSON)和非结构化(如纯文本)数据中获取形式为(事物1,关系,事物2)的三元组的过程称为关系抽取(relation extraction)。一般情况下,我们会尽量把关系抽取抽象成若干三元组的抽取,而不会做n元组(n>3)的抽取。... =&rk3s=8031ce6d&x-expires=1701706834&x-signature=h%2BWXx7jSYaRnqOgzaIwhfvhna9E%3D)1. 首先运行data_process.py,根据样本数据生成模型所需的训练数据。2. 优化schema,通过优化schema来提升模型的性能。3. ...
火山引擎大规模机器学习平台架构设计与应用实践
包括数据并行的框架(TensorflowPS、Horovod、PyTorchDDP、BytePS 等),模型并行的框架(Megatron-LM、DeepSpeed、veGiantModel 等),HPC 框架(Slurm、MPI 等)以及其他框架(SparkML、Ray 等)。不同的训练框架有各自的调度和资源要求,这就给底层基础设施带来一些挑战。#### 存储侧存储可以认为是机器学习的刚需,在存储侧面临的挑战也很大:- 高性能和扩展性:现在的硬件计算能力越来越快,读数据的吞吐需要跟上高性能的计算,对存...
字节跳动 EB 级 Iceberg 数据湖的机器学习应用与优化
=&rk3s=8031ce6d&x-expires=1701793216&x-signature=GbiyYJXJQQ1ljHGFyo0B6KNruKw%3D)猛犸湖(Magnus)基于 Apache Iceberg 自研、强化的整体架构如下:最上层的是**计算层**,延续了计算存储分离的设计理念。天然支持 Flink 和 Spark 引擎进行数据分析和 ETL 数据处理,同时还支持多种训练框架,包括我们团队近期开源的分布式训练调度框架 Primus,以及传统的 PyTorch 和 TensorFlow 等,用户可以根据需求选择适合的计算、训练框架。...
「火山引擎」数智平台 VeDI 数据中台产品双月刊 VOL.07
PyTorch/TensorFlow on PySpark- **弹性** **GPU** **资源** - 基于 Volcano Scheduler 深度优化,支持 GPU 资源调度和按量付费能力 - 具备混合 Quota 能力,队列一体化(分析/加工/训练/推理)- **极致特征存储** - 字节内部基于 ByteLake 构建离线特征存储 ![picture.image](https://p3-volc-community-sign.byteimg.com/tos-cn-i-tlddhu82om/b16320dc0abe4ba2984977377c20e9ea~tplv-tl...

体验中心

通用文字识别

OCR
对图片中的文字进行检测和识别,支持汉语、英语等语种
体验demo

白皮书

一图详解大模型
浓缩大模型架构,厘清生产和应用链路关系
立即获取

最新活动

火山引擎·增长动力

助力企业快速增长
了解详情

数据智能VeDI

易用的高性能大数据产品家族
了解详情

新用户特惠专场

云服务器9.9元限量秒杀
查看活动

一键开启云上增长新空间

立即咨询