ELT in ByteHouse 实践与展望格式各异的数据提取到数据仓库中,并进行处理加工。 传统的数据转换过程一般采用Extract-Transform-Load (ETL)来将业务数据转换为适合数仓的数据模型,然而,这依赖于独立于数仓外的ETL系统,因而维护成本较高。... 因此会在数据分析的某一阶段,从整体链路中将数据导出,做一些不同于主链路的ETL操作,会出现两份数据存储。其次在这过程中也会出现两套不同的ETL逻辑。当数据量变大,计算冗余以及存储冗余所带来的成本压力也会愈发...
浅谈大数据建模的主要技术:维度建模 | 社区征文## 前言我们不管是基于 Hadoop 的数据仓库(如 Hive ),还是基于传统 MPP 架构的数据仓库(如Teradata ),抑或是基于传统 Oracle 、MySQL 、MS SQL Server 关系型数据库的数据仓库,其实都面临如下问题:- 怎么组织数... 通常可被直观地分割为独立的逻辑块,每一个独立的逻辑块即为一个维度,比如一个订单可以非常直观地分为商品 、买家、卖家等多个维度。在维度建模和设计过程中,可以根据需求描述或者基于现有报表,很容易地将信息和分...
ByteHouse技术白皮书正式发布,云数仓核心技术能力首次全面解读> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。 在数字化浪潮下,伴随着公有云的广泛普... 深度剖析 ByteHouse 在企业级数据仓库场景下的业务需求和挑战;在整体架构及核心技术层面,完整呈现 ByteHouse 引擎不同层级及执行流程,详细解析元数据管理、自研表引擎、复杂查询执行模型等 ByteHouse 自研核心技术...
面向智能化BI分析平台建设的初步探索 | 社区征文### 1、BI的起源与发展 BI又称商业智慧或商务智能,是指用现代数据仓库技术、线上分析处理技术、数据挖掘以及数据展现技术进行数据分析以实现商业价值。 商业智能的概念最早在1996年由加特纳集团提出,加特纳... 已经有丰富的BI分析模型供分析师或业务人员使用。在进行数据分析时通常需要使用各种模型来验证自己的分析观点,一是为了使自己的结论更具备说服力,二是让自己的论证过程更具备逻辑性和条理性。常见的分析方法如RFM模...
干货 | 看 SparkSQL 如何支撑企业级数仓本文作者:惊帆 来自于数据平台 EMR 团队# 前言Apache Hive 经过多年的发展,目前基本已经成了业界构建超大规模数据仓库的事实标准和数据处理工具,Hive 已经不单单是一个技术组件,而是一种设计理念。Hive 有 JDB... 一个企业数仓的整体逻辑如上图所示,数仓在构建的时候通常需要 ETL 处理和分层设计,基于业务系统采集的结构化和非结构化数据进行各种 ETL 处理成为 DWD 层,再基于 DWD 层设计上层的数据模型层,形成 DM,中间会有 DWB...
以 100GB SSB 性能测试为例,通过 ByteHouse 云数仓开启你的数据分析之路是由麻省州立大学波士顿校区的研究员定义的基于现实商业应用的数据模型。SSB 是在 TPC-H 标准的基础上改进而成,主要将 TPC-H 中的雪花模型改成了更为通用的的星型模型,将基准查询从复杂的 Ad-hoc 查询改成了结构更... 欢迎联系 ByteHouse 进行查询优化。显示,数据库系统种类已经多达 870 种,可谓是欣欣向荣,让人眼花缭乱。纵观整个数据库发展史,关系型数据库系统是历史最悠久并且使用最广泛的一类数据库系统,其理论基础是基于 IBM 研究员 E.F.Codd 博士在 1970 年提出的“关系模型(Relational m...