火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅲ)> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群**近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。以下为 ByteHouse 技术白皮书**作业执行流程版块**摘录。技术白皮书(上...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅳ)> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群**近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。以下为 ByteHouse 技术白皮书【数据导入导出】版块摘录。技术白皮书(Ⅰ)(Ⅱ...
浅谈大数据建模的主要技术:维度建模 | 社区征文## 前言我们不管是基于 Hadoop 的数据仓库(如 Hive ),还是基于传统 MPP 架构的数据仓库(如Teradata ),抑或是基于传统 Oracle 、MySQL 、MS SQL Server 关系型数据库的数据仓库,其实都面临如下问题:- 怎么组织数... 每一个独立的逻辑块即为一个维度,比如一个订单可以非常直观地分为商品 、买家、卖家等多个维度。在维度建模和设计过程中,可以根据需求描述或者基于现有报表,很容易地将信息和分析需求分类到事实和度量中。比如...
DataLeap数据仓库流程最佳实践基于上述表数据,我们的数据分析需求如下:1)“查看最近三天商店销售额情况(未促销)TOP3”2)“查看最近三天消费最多的用户与金额TOP3”3)“获取商店地域分布情况” 经典数据仓库按照大类分为基础数据层、应用数据层。 本样例中,我们的数据仓库建设思路是: ODS(从生产系统采集原始数据,并将原始数据集成冗余宽表) DWD(对ODS冗余表数据进行轻度过滤处理) DWM (基于DWD表与业务需求,轻度聚合最近三天的数据) APP (基于DWD或DWM,...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅵ)> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 **以下为 ByteHouse 技术白皮书【核心技术解析——元数据】版块摘录...
DataLeap数据仓库流程最佳实践基于上述表数据,我们的数据分析需求如下:1)“查看最近三天商店销售额情况(未促销)TOP3”2)“查看最近三天消费最多的用户与金额TOP3”3)“获取商店地域分布情况”经典数据仓库按照大类分为基础数据层、应用数据层。本样例中,我们的数据仓库建设思路是:* ODS(从生产系统采集原始数据,并将原始数据集成...
ELT in ByteHouse 实践与展望> 更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群谈到数据仓库, 一定离不开使用Extract-Transform-Load (ETL)或 Extract-Load-Transform (ELT)。 将来源不同、格式各异的数... 因此会在数据分析的某一阶段,从整体链路中将数据导出,做一些不同于主链路的ETL操作,会出现两份数据存储。其次在这过程中也会出现两套不同的ETL逻辑。当数据量变大,计算冗余以及存储冗余所带来的成本压力也会愈发...