You need to enable JavaScript to run this app.
最新活动
产品
解决方案
定价
生态与合作
支持与服务
开发者
了解我们

数据仓库的逻辑类型

从数据接入、查询分析到可视化展现,提供一站式洞察平台,让数据发挥价值

域名注册服务

cn/com热门域名1元起,实名认证即享
1.00/首年起32.00/首年起
新客专享限购1个
立即购买

云服务器共享型1核2G

超强性价比,适合个人、测试等场景使用
9.90/101.00/月
新客专享限购1台
立即购买

CDN国内流量包100G

同时抵扣两种流量消耗,加速分发更实惠
2.00/20.00/年
新客专享限购1个
立即购买

数据仓库的逻辑类型-优选内容

火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(中)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎... 生成逻辑执行计划,优化执行计划,调度和执行 query,并将最终结果返回给用户。服务节点是无状态的,意味着用户可以接入任意一个服务节点(当然如果有需要,也可以隔离开),并且可以水平扩展,意味着平台具备支持高并发查...
浅谈数仓建设及数据治理 | 社区征文
数据仓库模型的建设方法和业务系统的企业数据模型似。在业务系统中,企业数据模型决定了数据的来源,而企业数据模型也分为两个层次,即主题域模型和逻辑模型。同样,主题域模型可以看成是业务模型的概念模型,而逻辑模型则是域模型在关系型数据库上的实例化。#### 2) 实体建模法实体建模法并不是数据仓库建模中常见的一个方法,它来源于哲学的一个流派。从哲学的意义上说,客观世界应该是可以细分的,客观世界应该可以分成由一个个实...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(上)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** **近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。** 白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 以下为 ByteHouse 技术白皮书前两个版块摘录。# 1.ByteHous...
ByteHouse:基于ClickHouse的实时数仓能力升级解读
ByteHouse是火山引擎上的一款云原生数据仓库,为用户带来极速分析体验,能够支撑实时数据分析和海量数据离线分析。便捷的弹性扩缩容能力,极致分析性能和丰富的企业级特性,助力客户数字化转型。全篇将从两个版块讲解... 业务和数据之间有着什么样的关系?在进入主题前,先来了解一下相关业务背景。在字节跳动内部,不同的业务线及产品背后,其实是有着大量的中台在进行支持。以抖音和今日头条为例,从内容运营的角度,核心逻辑是怎么样把...

数据仓库的逻辑类型-相关内容

火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅲ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群**近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。以下为 ByteHouse 技术白皮书**作业执行流程版块**摘录。技术白皮书(上...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅳ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群**近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。以下为 ByteHouse 技术白皮书【数据导入导出】版块摘录。技术白皮书(Ⅰ)(Ⅱ...
浅谈大数据建模的主要技术:维度建模 | 社区征文
## 前言我们不管是基于 Hadoop 的数据仓库(如 Hive ),还是基于传统 MPP 架构的数据仓库(如Teradata ),抑或是基于传统 Oracle 、MySQL 、MS SQL Server 关系型数据库的数据仓库,其实都面临如下问题:- 怎么组织数... 每一个独立的逻辑块即为一个维度,比如一个订单可以非常直观地分为商品 、买家、卖家等多个维度。在维度建模和设计过程中,可以根据需求描述或者基于现有报表,很容易地将信息和分析需求分到事实和度量中。比如...
DataLeap数据仓库流程最佳实践
基于上述表数据,我们的数据分析需求如下:1)“查看最近三天商店销售额情况(未促销)TOP3”2)“查看最近三天消费最多的用户与金额TOP3”3)“获取商店地域分布情况” 经典数据仓库按照大分为基础数据层、应用数据层。 本样例中,我们的数据仓库建设思路是: ODS(从生产系统采集原始数据,并将原始数据集成冗余宽表) DWD(对ODS冗余表数据进行轻度过滤处理) DWM (基于DWD表与业务需求,轻度聚合最近三天的数据) APP (基于DWD或DWM,...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅵ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 **以下为 ByteHouse 技术白皮书【核心技术解析——元数据】版块摘录...
DataLeap数据仓库流程最佳实践
基于上述表数据,我们的数据分析需求如下:1)“查看最近三天商店销售额情况(未促销)TOP3”2)“查看最近三天消费最多的用户与金额TOP3”3)“获取商店地域分布情况”经典数据仓库按照大分为基础数据层、应用数据层。![图片](https://portal.volccdn.com/obj/volcfe/cloud-universal-doc/upload_98ec7b40ada6825a898fd7157d6c3044.png)本样例中,我们的数据仓库建设思路是:* ODS(从生产系统采集原始数据,并将原始数据集成...
ELT in ByteHouse 实践与展望
> 更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群谈到数据仓库, 一定离不开使用Extract-Transform-Load (ETL)或 Extract-Load-Transform (ELT)。 将来源不同、格式各异的数... 因此会在数据分析的某一阶段,从整体链路中将数据导出,做一些不同于主链路的ETL操作,会出现两份数据存储。其次在这过程中也会出现两套不同的ETL逻辑。当数据量变大,计算冗余以及存储冗余所带来的成本压力也会愈发...

体验中心

通用文字识别

OCR
对图片中的文字进行检测和识别,支持汉语、英语等语种
体验demo

白皮书

数据智能知识图谱
火山引擎数智化平台基于字节跳动数据平台,历时9年,基于多元、丰富场景下的数智实战经验打造而成
立即获取

最新活动

火山引擎·增长动力

助力企业快速增长
了解详情

数据智能VeDI

易用的高性能大数据产品家族
了解详情

新用户特惠专场

云服务器9.9元限量秒杀
查看活动

一键开启云上增长新空间

立即咨询