You need to enable JavaScript to run this app.
最新活动
产品
解决方案
定价
生态与合作
支持与服务
开发者
了解我们

数据仓库查询精度

从数据接入、查询分析到可视化展现,提供一站式洞察平台,让数据发挥价值

域名注册服务

cn/com热门域名1元起,实名认证即享
1.00/首年起32.00/首年起
新客专享限购1个
立即购买

云服务器共享型1核2G

超强性价比,适合个人、测试等场景使用
9.90/101.00/月
新客专享限购1台
立即购买

CDN国内流量包100G

同时抵扣两种流量消耗,加速分发更实惠
2.00/20.00/年
新客专享限购1个
立即购买

数据仓库查询精度-优选内容

火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(中)
云原生数据仓库 ByteHouse 总体架构图如上图所示,设计目标是实现高扩展性、高性能、高可靠性、高易用性。从下往上,总体上分服务层、计算层和存储层。## 服务层服务层包括了所有与用户交互的内容,包括用户管理、身份验证、查询优化器,事务管理、安全管理、元数据管理,以及运维监控、数据查询等可视化操作功能。 **服务层主要包括如下组件:**- **资源管理器**资源管理器(Resource Manager)负责对计算资源进行统一的...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅲ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群**近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。以下为 ByteHouse 技术白皮书**作业执行流程版块**摘录。技术白皮书(上...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(上)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** **近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。** 白皮书简述了 ByteHouse 基于 ClickHous... 数据一致性与事务支持。- 计算资源隔离,读写分离:通过计算组(VW)概念,对宿主机硬件资源进行灵活切割分配,按需扩缩容。资源有效隔离,读写分开资源管理,任务之间互不影响,杜绝了大查询打满所有资源拖垮集群的...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅵ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 **以下为 ByteHouse 技术白皮书【核心技术解析——元数据】版块摘录...

数据仓库查询精度-相关内容

浅谈数仓建设及数据治理 | 社区征文
## 一、前言在谈数仓之前,先来看下面几个问题:### 1. 数仓为什么要分层?1. 用空间换时间,通过大量的预处理来提升应用系统的用户体验(效率),因此数据仓库会存在大量冗余的数据;不分层的话,如果源业务系统的业... 是数据仓库工程领域最流行的数仓建模经典。维度建模以分析决策的需求出发构建模型,构建的数据模型为分析需求服务,因此它重点解决用户如何更快速完成分析需求,同时还有较好的大规模复杂查询的响应性能。![星形模型...
浅谈大数据建模的主要技术:维度建模 | 社区征文
## 前言我们不管是基于 Hadoop 的数据仓库(如 Hive ),还是基于传统 MPP 架构的数据仓库(如Teradata ),抑或是基于传统 Oracle 、MySQL 、MS SQL Server 关系型数据库的数据仓库,其实都面临如下问题:- 怎么组织数... 维度属性是查询约柬条件( SQL where 条件)、分组( SQL group 语句)与报表标签生成的基本来源在查询与报表需求中, 属性用 by (按)这个单词进行标识。> **维度属性在数据仓库中承担着一个重要的角色**由于它们实...
ELT 支持
ByteHouse 作为云原生数据仓库,逐渐引入了对 ELT(Extract-Load-Transform,提取-加载-转换)的支持。 这使得用户可以避免维护多个异构数据系统。 概述ELT 专注于将经过最少处理的数据加载到数据仓库中,并将大部分转换操作留在分析阶段。 它不需要大量的数据建模,并为分析师提供了更灵活的选择。 ELT 已成为当今处理大数据的规范,它对数据仓库提出了许多新的要求。 查询队列在集群中,我们可能会遇到节点出现不健康状态,或者超载的情...
ByteHouse MaterializedMySQL 增强优化
实现了基于 MySQL Binlog 机制的业务数据库实时同步功能。 这样不依赖其他数据同步工具,就能将 MySQL 整库数据实时同步到 ClickHouse,从而能基于 ClickHouse 构建实时数据仓库。 ByteHouse 是基于 Cli... 便于实时查看同步状态和排查异常问题。**出错后运维**当同步任务出现了同步异常后,通过查看运行日志系统表定为问题。针对性处理了异常问题后,通过 resync 命令重启同步任务。## 分布式模式社区版 Materi...
应用场景
应用场景 1.云原生数据湖仓 数据湖仓是一种结合了数据湖和数据仓库的新型数据架构,实现了更加灵活、高效和可扩展的数据管理,能够协助企业更好的理解和使用数据资产,提升业务价值。以互联网行业为例,企业需要搭建数... 数据实时性,data serving,并发等都有较高的要求,离线分析系统无法满足该类需求。实时数仓场景具备如下特点: 支持流式入仓,数据秒级可见; 支持高并发数据服务,支持万级QPS; 秒级或亚秒级数据查询性能; 支持实时指标...
配置 ByteHouse 云数仓版 数据
ByteHouse 是一款火山引擎云原生数据仓库,为您提供极速分析体验,能够支撑实时数据分析和海量数据离线分析等场景。DataSail 中的 ByteHouse 云数仓版数据源配置,为您提供读取和写入 ByteHouse 的双向通道数据集成能... 参数配置 ByteHouse 库 下拉选择已在 ByteHouse 云数仓版中创建的数据库名称信息。 *计算组 ByteHouse_CDW 中查询使用的计算组。如果在 ByteHouse 中设置了默认计算组就可以不明确指定。详见 ByteHouse CDW 计算组...
基于 ByteHouse 构建实时数仓实践
因此在数据产生后必须尽快对其进行计算和处理,从而最大效率实现数据价值转化,对实时数仓的建设需求自然而然的诞生了。而建设好实时数仓需要解决如下几个问题: 一、稳定性:实时数仓对数据的实时处理必须是可靠的、稳定的;二、高效数据集成:流式数据的集成必须方便高效,要求能进行高并发、大数据量的写入;三、极致性能要求:实时数仓不能仅限于简单查询,需要支持复杂计算能力,且计算结果可秒级返回;四、灵活查询:需要具...

体验中心

通用文字识别

OCR
对图片中的文字进行检测和识别,支持汉语、英语等语种
体验demo

白皮书

数据智能知识图谱
火山引擎数智化平台基于字节跳动数据平台,历时9年,基于多元、丰富场景下的数智实战经验打造而成
立即获取

最新活动

火山引擎·增长动力

助力企业快速增长
了解详情

数据智能VeDI

易用的高性能大数据产品家族
了解详情

新用户特惠专场

云服务器9.9元限量秒杀
查看活动

一键开启云上增长新空间

立即咨询