数据仓库运维管理问题-优选内容
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(上)
为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 以下为 ByteHouse 技术白皮书前两个版块摘录。# 1.ByteHouse 简介ByteHouse 是字节跳动自主研发的云原生数据仓库产品,在开源 ClickHouse 引擎之上做了技术架构重构,实现了云原生环境的部署和运维管理、存储计算分离、多租户管理等功能。在可扩展性、稳定性、可运维性、性能以及资源利用率方面都有巨大的提升。 截至 2022 年 2 月,ByteHous...
浅谈数仓建设及数据治理 | 社区征文
## 一、前言在谈数仓之前,先来看下面几个问题:### 1. 数仓为什么要分层?1. 用空间换时间,通过大量的预处理来提升应用系统的用户体验(效率),因此数据仓库会存在大量冗余的数据;不分层的话,如果源业务系统的业务规则发生变化将会影响整个数据清洗过程,工作量巨大。2. 通过数据分层管理可以简化数据清洗的过程,因为把原来一步的工作分到了多个步骤去完成,相当于把一个复杂的工作拆成了多个简单的工作,把一个大的黑盒变成了一...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅴ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 **以下为 ByteHouse 技术白皮书【多租户管理、运维监控管理】版块摘...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(中)
云原生数据仓库 ByteHouse 总体架构图如上图所示,设计目标是实现高扩展性、高性能、高可靠性、高易用性。从下往上,总体上分服务层、计算层和存储层。## 服务层服务层包括了所有与用户交互的内容,包括用户管理、身份验证、查询优化器,事务管理、安全管理、元数据管理,以及运维监控、数据查询等可视化操作功能。 **服务层主要包括如下组件:**- **资源管理器**资源管理器(Resource Manager)负责对计算资源进行统一的...
数据仓库运维管理问题-相关内容
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅵ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 **以下为 ByteHouse 技术白皮书【核心技术解析——元数据】版块摘录...
ELT in ByteHouse 实践与展望
> 更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群谈到数据仓库, 一定离不开使用Extract-Transform-Load (ETL)或 Extract-Load-Transform (ELT)。 将来源不同、格式各异的数... 使用者可以免运维。用户通过控制台建表、导数据以及使用查询功能。在数据量较小、使用较为简单的情况下,用户可以先试用企业版本,如果之后集群规模变大、运维压力较大,亦或是扩展能力要求变高,那么就可以转用到纯...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅳ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群**近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。以下为 ByteHouse 技术白皮书【数据导入导出】版块摘录。技术白皮书(Ⅰ)(Ⅱ...
ByConity 技术详解之 ELT
谈到数据仓库, 一定离不开使用Extract-Transform-Load (ETL)或 Extract-Load-Transform (ELT)。 将来源不同、格式各异的数据提取到数据仓库中,并进行处理加工。传统的数据转换过程一般采用Extract-Transform-Load ... 当数据量变大,计算冗余以及存储冗余所带来的成本压力也会愈发变大,同时,存储空间的膨胀也会让弹性扩容变得不便利。### 业界解决思路在业界中,为了解决以上问题,有以下几类流派:- **数据预计算流派**:如Kyl...
应用场景
企业需要搭建数据分析平台,聚合APP和日志数据分析客户行为支持精准营销,辅助分析决策。但自建开源大数据平台时,往往面临管理维护人力投入大,资源成本高且不灵活等问题。 火山引擎EMR提供丰富的主流开源大数据组件,100%开源兼容,支持平滑迁移和长期演进。提供企业级组件优化和管控能力,帮助企业开发运维降本增效。一个架构支撑完整能力的数据湖仓方案,支持EB级别的数据仓库、湖内建仓、湖仓一体等。配合火山引擎大数据研发治理套件...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅲ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群**近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。以下为 ByteHouse 技术白皮书**作业执行流程版块**摘录。技术白皮书(上...
2022技术盘点之平台云原生架构演进之道|社区征文
多云管理平台解决异构的基础设施资源复杂难管理问题。平台可纳管不同环境、不同云厂商资源统一管理,并结合平台的统一监控告警、统一服务管理、统一运营管理、统一运维管理、自动化运维等能力能极大简化云用户、云运... 数据库有MongoDB分片集群/MySQL/Redis/ElasticSearch/RabbitMQ进行各类业务数据计算和存储## 三 流量管控...