You need to enable JavaScript to run this app.
最新活动
产品
解决方案
定价
生态与合作
支持与服务
开发者
了解我们

数据仓库的逻辑模型和物理模型

从数据接入、查询分析到可视化展现,提供一站式洞察平台,让数据发挥价值

域名注册服务

cn/com热门域名1元起,实名认证即享
1.00/首年起32.00/首年起
新客专享限购1个
立即购买

云服务器共享型1核2G

超强性价比,适合个人、测试等场景使用
9.90/101.00/月
新客专享限购1台
立即购买

CDN国内流量包100G

同时抵扣两种流量消耗,加速分发更实惠
2.00/20.00/年
新客专享限购1个
立即购买

数据仓库的逻辑模型和物理模型-优选内容

浅谈数仓建设及数据治理 | 社区征文
数据仓库模型的建设方法和业务系统的企业数据模型类似。在业务系统中,企业数据模型决定了数据的来源,而企业数据模型也分为两个层次,即主题域模型和逻辑模型。同样,主题域模型可以看成是业务模型的概念模型,而逻辑模型则是域模型在关系型数据库上的实例化。#### 2) 实体建模法实体建模法并不是数据仓库建模中常见的一个方法,它来源于哲学的一个流派。从哲学的意义上说,客观世界应该是可以细分的,客观世界应该可以分成由一个个实...
数仓黄金价值圈: 为什么、是什么、怎么做|社区征文
今天给大家一起分享下有着悠久历史的数据仓库的一些思考由三部分组成为什么,搭建数据仓库是什么,数据仓库定义怎么做,如何搭建数仓# 一:为什么,搭建数据仓库最终目标:**数据驱动资源优化配置,即科学、高效... 以上是数据仓库的广泛定义,随着企业数字化转型的大浪潮中,我们需要把数据上升一个维度来看,适合当下这个万物互联的时代,我们可以总结成一句话数据是物理世界的**镜像**,而数据仓库是**有序**还原物理世界的一种*...
ByConity 技术详解之 ELT
格式各异的数据提取到数据仓库中,并进行处理加工。传统的数据转换过程一般采用Extract-Transform-Load (ETL)来将业务数据转换为适合数仓的数据模型,然而,这依赖于独立于数仓外的ETL系统,因而维护成本较高。ByCon... 因此会在数据分析的某一阶段,从整体链路中将数据导出,做一些不同于主链路的ETL操作,会出现两份数据存储。其次在这过程中也会出现两套不同的ETL逻辑。当数据量变大,计算冗余以及存储冗余所带来的成本压力也会愈发...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(上)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** **近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。** 白皮书简述了 ByteHouse 基于 ClickHous... 在引擎外提供更加丰富的企业级功能和可视化管理界面:**- 库表资产管理:控制台建库建表,管理元信息。- 多租户管理:支持多租户模型,租户间互相隔离,独立计费。- RBAC 权限管理:支持库、表、列级,读、写、资...

数据仓库的逻辑模型和物理模型-相关内容

火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(中)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎... 生成逻辑执行计划,优化执行计划,调度和执行 query,并将最终结果返回给用户。服务节点是无状态的,意味着用户可以接入任意一个服务节点(当然如果有需要,也可以隔离开),并且可以水平扩展,意味着平台具备支持高并发查...
浅谈大数据建模的主要技术:维度建模 | 社区征文
## 前言我们不管是基于 Hadoop 的数据仓库(如 Hive ),还是基于传统 MPP 架构的数据仓库(如Teradata ),抑或是基于传统 Oracle 、MySQL 、MS SQL Server 关系型数据库的数据仓库,其实都面临如下问题:- 怎么组织数... 通常可被直观地分割为独立的逻辑块,每一个独立的逻辑块即为一个维度,比如一个订单可以非常直观地分为商品 、买家、卖家等多个维度。在维度建模和设计过程中,可以根据需求描述或者基于现有报表,很容易地将信息和分...
数仓进阶篇@记一次BigData-OLAP分析引擎演进思考过程 | 社区征文
数仓多维数据模型详细设计,欢迎一起加入交流探讨,希望能给读者在实际业务场景-OLAP分析演进过程中有些不一样的IDea。 ## 场景目前数据存储的业务类型-**OLTP**,**OLAP......****1、** 其中一种是企业知识库... 拥有和Hadoop一样的可扩展性、它提供了类SQL-类Hsql语法,在多用户场景下亦能拥有较高的响应速度和吞吐量,兼顾数据仓库,具有实时,批处理,多并发等优点。![image.png](https://p1-juejin.byteimg.com/tos-cn-i-k3u...
干货 | 看 SparkSQL 如何支撑企业级数仓
本文作者:惊帆 来自于数据平台 EMR 团队# 前言Apache Hive 经过多年的发展,目前基本已经成了业界构建超大规模数据仓库的事实标准和数据处理工具,Hive 已经不单单是一个技术组件,而是一种设计理念。Hive 有 JDB... 一个企业数仓的整体逻辑如上图所示,数仓在构建的时候通常需要 ETL 处理和分层设计,基于业务系统采集的结构化和非结构化数据进行各种 ETL 处理成为 DWD 层,再基于 DWD 层设计上层的数据模型层,形成 DM,中间会有 DWB...
PostgreSQL 中逻辑复制的使用场景
# 前言在这篇文档中[1],我们了解了物理复制和逻辑复制的区别,本章内容主要聚焦于逻辑复制的使用场景,当了解了适用场景后,会使得业务架构更加灵活。## 场景一:数据汇总与拆分当多个独立的业务库需要将数据汇总到数据仓库,以便于进行后续分析的场景,逻辑复制是非常适合的。一是不需要额外的组件来支撑,二是可以做到实时同步。对于数据拆分的场景,由于逻辑复制的粒度可以到表级别,可以将一个数据库按照表的粒度拆分到不同的数据...
字节跳动流式数仓和实时服务分析的思考与实践
这使工程师运维和学习的成本非常高; 2、**数据一致性和正确性问题**,数据来自多个源头,采用了流批两种处理方式,处理逻辑不一样,代码不可复用,在 ETL 的计算过程中数据被反复引用,这些都可能使最终的业务数据发... 在分析的时候需要预设好的视图或模型,海量分析时,通过预设的分析模型,分析出来的结果给到 Serving 对应的数据库,如 HBase,Redis,MySQL,在这个过程中 Serving 跟分析是分离的。 同时字节团队在业务的决策过程中发...
基于 ByteHouse 构建实时数仓实践
星型模型、雪花模型在内的各类模型。 ByteHouse 可以满足企业级用户的多种分析需求,包括 OLAP 多维分析、定制报表、实时数据分析和 Ad-hoc 数据分析等各种应用场景。 ### ByteHouse 优势一:实时数据高... 数据排查上也好做溯源回查。**DWD 层(Data Warehouse Detail)**DWD 层采用维度建模理论,针对业务内容梳理业务实体的维表信息和事实表信息,设计 DWD 明细宽表模型,根据设计好的逻辑模型对 ODS 层的数据进行数据...

体验中心

通用文字识别

OCR
对图片中的文字进行检测和识别,支持汉语、英语等语种
体验demo

白皮书

数据智能知识图谱
火山引擎数智化平台基于字节跳动数据平台,历时9年,基于多元、丰富场景下的数智实战经验打造而成
立即获取

最新活动

火山引擎·增长动力

助力企业快速增长
了解详情

数据智能VeDI

易用的高性能大数据产品家族
了解详情

新用户特惠专场

云服务器9.9元限量秒杀
查看活动

一键开启云上增长新空间

立即咨询