干货|揭秘字节跳动对Apache Doris 数据湖联邦分析的升级和优化湖仓一体架构演进回顾湖仓一体的发展史,主要经历了三个阶段。第一个阶段是数据仓库,第二个阶段是数据湖,第三个阶段是湖仓一体。## 数据仓库阶段数据仓库是在上个世纪80年代兴起的一项技术。随着企业业务发展和大规模计算技术的发展,越来越多的企业使用数据仓库来处理企业产生的数据,发现数据的商业价值。 在这个时期,主要是将来自业务系统的多种结构化数据聚合到数据仓库中,利用 MPP 等大规模并发技术对企业的数据进行分...
「火山引擎」数智平台 VeDI 数据中台产品双月刊 VOL.06数据仓库、湖仓一体等数据平台架构,帮助用户轻松完成企业大数据平台的建设,降低运维门槛,快速形成大数据分析能力。(**公众号后台回复数字“3”了解更多产品信息。** ) ## **产品迭代一览**### **大数据研发治理** **套件** **DataLeap**- **【** **公有云** **-华东区2 服务陆续部署】** - 数据质量支持 EMR 引擎的数据监控、数据探查、数据对比等能力 - 数据集成新增支持离线集成、流式集成任务- ...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(中)> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 **以下为 ByteHouse 技术白皮书整体架构设计版块摘录。** [点...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅵ)> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 **以下为 ByteHouse 技术白皮书【核心技术解析——元数据】版块摘录...
DataLeap数据仓库流程最佳实践前言 本实验以DataLeap on LAS为例,实际操作火山引擎数据产品,完成数据仓库的构建。 关于实验 预计部署时间:50分钟 级别:初级 相关产品:大数据开发套件、湖仓一体分析服务LAS 受众: 通用 环境说明已购买DataLeap产品 已创建湖仓一体LAS队列 子账户具备DataLeap相关权限(参考:https://www.volcengine.com/docs/6260/65408) 实验说明 步骤1:创建项目 步骤2:计算资源组设置本案例以湖仓一体Las为例,这里选择已创建的湖仓一体...
如何快速构建企业级数据湖仓?数据平台微信公众号,回复【1】进入官方交流群 > 本文整理自火山引擎开发者社区技术大讲堂第四期演讲,主要介绍了数据湖仓开源趋势、火山引擎 EMR 的架构及特点,以及如何基于火山引擎 EMR 构建企业级数据湖仓。# **数据湖** **仓开源趋势**## **趋势一:数据架构向 LakeHouse 方向发展**LakeHouse是什么?简言之,LakeHouse是在 DataLake 基础上融合了 Data Warehouse 特性的一种数据方案,它既保留了 DataLake 分析结构化...
火山引擎ByteHouse:4000字总结,Serverless在OLAP领域应用的五点思考在OLAP数据分析领域,我们先看哪些分析模式不适用于Serverless架构:1. **长任务,大Job:** 如果分析任务需要长时间运行(如超过20分钟),使用 Serverless 技术会受到限制。因为 Serverless 平台通常设置了最大运行时间的限制,超过限制时间会导致任务中断。2. **计算密集型**:Serverless 技术通常适用于处理轻量级任务,而对于高计算密集型任务,需要更多计算资源,但行业上目前当前尚未有商用的Serverless 数据仓库能够提供超过20...