You need to enable JavaScript to run this app.
最新活动
产品
解决方案
定价
生态与合作
支持与服务
开发者
了解我们

深度学习做标记

面向机器学习应用开发者,提供 WebIDE 和自定义训练等丰富建模工具、多框架高性能模型推理服务的企业级机器学习平台

社区干货

基于深度学习的探地雷达图像去杂波|社区征文

随着深度学习以及大模型的普及,人们开始尝试将其应用到探地雷达图像去杂波任务中。 **基于深度学习的探地雷达图像去杂波**凭借强大的特征表示和学习能力,基于深度学习的方法已被广泛用于解决探地雷达杂波去除任务。由于 GPR 数据具有波速变化和反射不连续性等特性,可能需要大量的标记数据才能训练出准确的模型。这意味着需要花费更多的时间和资源来收集和标记数据,并且模型结构相对复杂,为降低其运算时间,我们主要采用两...

基于深度学习的工业缺陷检测详解——从0到1|社区征文

# beginning2023年可谓是人工智能浪潮翻涌的一年,AI在各个领域遍地开花。以我最熟悉的工业为例,深度学习也在其中起着重要作用。不知道小伙伴们熟不熟悉工业领域的缺陷检测腻?🧐🧐🧐今天就以钢轨表面缺陷为例,和大家唠唠基于深度学习的钢轨表面伤损细粒度图像识别与目标检测,***总结一下工业缺陷检测流程***,包括从最开始的数据标注,中间的算法原理,再到最后的落地应用。无论你是搞实际项目or发论文or开阔视野,相信都会有所收获...

我的深度学习项目经验分享|社区征文

为大家详细介绍我是如何使用深度学习与视频分析技术构建项目的。# 项目细节## 需求分析这可能是一个与本文主题关联不大的模块,为了能让读者清楚了解项目背景,就简单总结几点项目需求。首先在功能方面,系统大致需要能解码视频并提取关键帧用于人脸检测和行为识别,并且要能展示分析结果,包括标注人脸和行为,还能够实时报警。系统性能方面,要在实时场景下对大量视频数据进行处理和分析,所以需要有高效的算法和硬件支持,简而言...

大模型和深度学习的工作总结|社区征文

越来越多的技术:深度学习、AI、大模型、虚拟现实VR等慢慢进入我们的生活。**基于大模型的图像去雾**在今年这个阶段,我的主要工作是研究基于深度学习的图像去雾工作。随着现代工业文明的发展进步,大气污染现象愈... 与作为语言 Transformer 中处理的基本元素的单词标记不同,视觉元素在规模上可能存在很大差异,这一问题在对象检测等任务中受到关注。在现有的基于 Transformer 的模型中,图像都是固定规模的,这种属性不适合这些视觉...

特惠活动

2核4G热门爆款云服务器

100%性能独享不限流量,学习测试、web前端、企业应用首选,每日花费低至0.24元
89.00/2380.22/年
立即抢购

8核32G幻兽帕鲁游戏服务器

至少支持20人丝滑畅玩,100%CPU性能独享,10M带宽不限流量,品质玩家力荐
112.00/1586.71/月
立即购买

16核64G幻兽帕鲁游戏服务器

支持最高32人开黑体验,100%CPU性能独享,20M带宽不限流量,保障极致游戏体验
567.00/3259.22/月
立即购买

深度学习做标记-优选内容

基于深度学习的探地雷达图像去杂波|社区征文
随着深度学习以及大模型的普及,人们开始尝试将其应用到探地雷达图像去杂波任务中。 **基于深度学习的探地雷达图像去杂波**凭借强大的特征表示和学习能力,基于深度学习的方法已被广泛用于解决探地雷达杂波去除任务。由于 GPR 数据具有波速变化和反射不连续性等特性,可能需要大量的标记数据才能训练出准确的模型。这意味着需要花费更多的时间和资源来收集和标记数据,并且模型结构相对复杂,为降低其运算时间,我们主要采用两...
基于深度学习的工业缺陷检测详解——从0到1|社区征文
# beginning2023年可谓是人工智能浪潮翻涌的一年,AI在各个领域遍地开花。以我最熟悉的工业为例,深度学习也在其中起着重要作用。不知道小伙伴们熟不熟悉工业领域的缺陷检测腻?🧐🧐🧐今天就以钢轨表面缺陷为例,和大家唠唠基于深度学习的钢轨表面伤损细粒度图像识别与目标检测,***总结一下工业缺陷检测流程***,包括从最开始的数据标注,中间的算法原理,再到最后的落地应用。无论你是搞实际项目or发论文or开阔视野,相信都会有所收获...
我的深度学习项目经验分享|社区征文
为大家详细介绍我是如何使用深度学习与视频分析技术构建项目的。# 项目细节## 需求分析这可能是一个与本文主题关联不大的模块,为了能让读者清楚了解项目背景,就简单总结几点项目需求。首先在功能方面,系统大致需要能解码视频并提取关键帧用于人脸检测和行为识别,并且要能展示分析结果,包括标注人脸和行为,还能够实时报警。系统性能方面,要在实时场景下对大量视频数据进行处理和分析,所以需要有高效的算法和硬件支持,简而言...
大模型和深度学习的工作总结|社区征文
越来越多的技术:深度学习、AI、大模型、虚拟现实VR等慢慢进入我们的生活。**基于大模型的图像去雾**在今年这个阶段,我的主要工作是研究基于深度学习的图像去雾工作。随着现代工业文明的发展进步,大气污染现象愈... 与作为语言 Transformer 中处理的基本元素的单词标记不同,视觉元素在规模上可能存在很大差异,这一问题在对象检测等任务中受到关注。在现有的基于 Transformer 的模型中,图像都是固定规模的,这种属性不适合这些视觉...

深度学习做标记-相关内容

个人年度总结:深度学习与AIGC技术在智能诗歌生成中的应|社区征文

视频等等。![picture.image](https://p3-volc-community-sign.byteimg.com/tos-cn-i-tlddhu82om/88f3a783ab484316b91a6b047b9a4d7e~tplv-tlddhu82om-image.image?=&rk3s=8031ce6d&x-expires=1709655639&x-sig... 其中深度学习模型不断完善、开源模式的推动、大模型探索商业化的可能,成为 AIGC 发展的“加速度”。# “智能诗歌生成”的AIGC项目我曾参与了一个名为“智能诗歌生成”的AIGC项目。该项目的主要目标是利用人工智...

边缘智变:深度学习引领下的新一代计算范式|社区征文

下面给出一个博主过的实例,使用边缘计算对大量的医疗数据进行实时处理和分析。1. 数据采集我们可以使用医疗设备和传感器采集患者的生理数据,心电图、血压、血糖等。这些数据可以通过设备层发送到边缘服务器层,发送前也要做好数据处理的预处理工作。2. 数据处理在边缘服务器层,使用数据处理算法对采集的数据进行预处理和清洗,去除噪声和异常值。```import pandas as pd # 读取数据 data = pd.read_csv('patien...

大模型:深度学习之旅与未来趋势|社区征文

# 前言从去年chatGPT爆火,到国内千模大战,关乎大模型的热度已经沸反盈天。但大模型出现的价值、意义似乎与实际使用效果存在鲜明的对比,特别是日常工作中,最多让大模型帮助生成一些不痛不痒、凑字数的内容,难易触达工作的核心环节。所以趁着国庆假期,我试图用国产大模型来协助完成一篇文章,从“知识生产”这个大模型擅长的角度来验证大模型能否更深度提升个人工作效率。![picture.image](https://p6-volc-community-sign.byte...

2核4G热门爆款云服务器

100%性能独享不限流量,学习测试、web前端、企业应用首选,每日花费低至0.24元
89.00/2380.22/年
立即抢购

8核32G幻兽帕鲁游戏服务器

至少支持20人丝滑畅玩,100%CPU性能独享,10M带宽不限流量,品质玩家力荐
112.00/1586.71/月
立即购买

16核64G幻兽帕鲁游戏服务器

支持最高32人开黑体验,100%CPU性能独享,20M带宽不限流量,保障极致游戏体验
567.00/3259.22/月
立即购买

边缘计算技术:深度学习与人工智能的融合|社区征文

**边缘ML:** 是指机器学习在不处于核心数据中心的,企业级计算机/设备中的应用。边缘设备包括服务器机房,现场服务器,以及位于各个地区以加快响应速度为目的的小型数据中心。云端和边缘端的ML 已经通过3年多的科普,广为大众所接受。今天我们看到的人脸门禁、摄像头行为识别、智能音箱...... 绝大部分场景都属于这两类。 以 TensorFlow & TF lite 等开源深度学习框架为基础的大量应用,推动了智能在云端和边缘端应用。然而,更加具有...

AI与深度学习的一年 | 社区征文

深度学习方法能以更方便的方式对特征进行提取,在图像分类、人工智能等领域取得了良好的效果。近些年来,一些研究人员开始将深度学习方法应用于癫痫发作检测领域。# 方法## 1融合GCN和transformer的癫痫自动检测模型基于GCN和transformer的癫痫自动检测模型,该网络模型处理过程中可以分成三个步骤:特征提取、重构和分类。在特征提取阶段,通过GCN对输入的脑电信号进行去噪并进行特征提取处理;特征重构阶段将处理后的数据作为特...

【技术人的 2023】 ——我的AI学习之旅年度总结|社区征文

我们课下也经常一起学习探讨,共同进步。下面大致总结项目中的一些知识。 我们的设计思路是,第一步先进行数据收集和与处理工作。 影像识别一般就包括一些医学影像,比如X射线,MRI等等影像数据,这些数据很好获得,我们小组是去学校附近的医院进行沟通,获得了一些废弃的影像数据等,或者从网络拉去也可,方式多样。收集数据后进行数据的标注,比如疾病部位或是异常情况,作为深度学习算法的训练标签。之后就是预处理工作,这里设计的...

字节跳动 EB 级 Iceberg 数据湖的机器学习应用与优化

> 深度学习的模型规模越来越庞大,其训练数据量级也成倍增长,这对海量训练数据的存储方案也提出了更高的要求:怎样更高性能地读取训练样本、不使数据读取成为模型训练的瓶颈,怎样更高效地支持特征工程、更便捷地增删... 处理常用的 Spark 引擎中也了部分 Arrow 化改造。需要注意的是,我们也在在线流式训练中尝试切换 Arrow,但开销还是很大,可能的原因是流式的样本是每条通过的,不适合 Arrow 这种批式的形式从而导致额外的开销。 ...

人工智能之自然语言处理技术总结与展望| 社区征文

基于有标记数据的监督学习是研究的重点,例如随着深度学习蓬勃发展而产生的的神经网络架构:前馈神经网络(FNN)、卷积神经网络(CNN)和循环神经网络(RNN)。但由于人工标注数据量比较少以及对没有标签的数据进行人工标注的成本比较高,所以如何更加科学的利用**大量未标记数据**以及**标记数据**则成为了新一波研究的热潮。前者则孕育出了预训练模型、提示学习(Prompt Learning)等细分领域,而后者则孕育出了数据增强等细分领域。  ...

万字长文带你弄透Transformer原理|社区征文

> 🍊作者简介:[秃头小苏](https://juejin.cn/user/1359414174686455),致力于用最通俗的语言描述问题>> 🍊专栏推荐:[深度学习网络原理与实战](https://juejin.cn/column/7138749154150809637)>> 🍊近期目标:写好... 那么这里我准备一个VIT的入门系列,打算一共分为三篇来讲述,计划如下:- `第一篇:`介绍NLP领域的transformer,这是我们入门VIT的必经之路,我认为这也是最艰难的一步。当然我会尽可能从一个CV程序员的角度来帮助大...

特惠活动

2核4G热门爆款云服务器

100%性能独享不限流量,学习测试、web前端、企业应用首选,每日花费低至0.24元
89.00/2380.22/年
立即抢购

8核32G幻兽帕鲁游戏服务器

至少支持20人丝滑畅玩,100%CPU性能独享,10M带宽不限流量,品质玩家力荐
112.00/1586.71/月
立即购买

16核64G幻兽帕鲁游戏服务器

支持最高32人开黑体验,100%CPU性能独享,20M带宽不限流量,保障极致游戏体验
567.00/3259.22/月
立即购买

产品体验

体验中心

幻兽帕鲁服务器搭建

云服务器
快速搭建幻兽帕鲁高性能服务器,拒绝卡顿,即可畅玩!
即刻畅玩

白皮书

一图详解大模型
浓缩大模型架构,厘清生产和应用链路关系
立即获取

最新活动

热门联机游戏服务器

低至22元/月,畅玩幻兽帕鲁和雾锁王国
立即部署

火山引擎·增长动力

助力企业快速增长
了解详情

数据智能VeDI

易用的高性能大数据产品家族
了解详情

一键开启云上增长新空间

立即咨询