浅谈数仓建设及数据治理 | 社区征文## 一、前言在谈数仓之前,先来看下面几个问题:### 1. 数仓为什么要分层?1. 用空间换时间,通过大量的预处理来提升应用系统的用户体验(效率),因此数据仓库会存在大量冗余的数据;不分层的话,如果源业务系统的业... 一般采用如下分层结构:### 1. 数据层具体实现>使用四张图说明每层的具体实现- **数据源层ODS** 的数据湖平台。 - Hudi 支持各类计算、查询引擎(Flink、Spark、Presto、Hive),底层存储兼容各类文件系统 (HDFS、Amazon S3、GCS、OSS) - H... 从而提高离线数据的产出时效性 。降低数据基线破线的风险。通过复用批流计算的结果,也可以提高开发的人效。- 统一存储:字节数据湖采用HDFS作为底层存储层,通过将ods、dwd这类偏上游的数仓层次的数据入湖,并...
实战分享(直播&PPT)欢迎关注【字节跳动数据平台】视频号,第一时间获取更多技术分享。以下是关于大数据、湖仓一体、数据湖、数据仓库、开源、数据中台等主题的直播与演讲 PPT 等一手材料,欢迎自取与观看: 【Apache Hudi 中文社区技术交... 《数据湖化的新思考》《基于数据湖的样本存储与样本生成》 Hudi 中文社区技术交流会-第九期 2023.03.30《社区最新进展同步》《字节跳动基于 Hudi 的湖仓一体及应用实践》《电商流量基于 Hudi 的 ODS 落湖实践》 Hu...
基于 ByteHouse 构建实时数仓实践> 更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群 **随着数据的应用场景越来越丰富,企业对数据价值反馈到业务中的时效性要求也越来越高,很早就有人提出过一个概念:**... **APP 层(Application)**作为对接具体应用的数仓层级,由 ByteHouse 提供统一的数据服务,是基于 DWD 和 DWS 层对外提供一些定制化实时流。 点击跳转 [ByteHouse云原生数据仓库]( ) 了解更多
基于火山引擎 EMR 构建企业级数据湖仓用户无需直接接触底层组件,运维和底层优化都交由商业产品解决,负担就会减轻。而且商业公司还有能力提供上层的 ETL 管道等产品,有了这些产品,用户即可容易地从原有架构迁移到成熟产品上。所以我们看到,**LakeHous... 近几年火起来的 ClickHouse 和 Doris 也是 Native 化的一个表现。另外一个趋势是向量化。说到这里要提一句,Codegen 跟向量化,都是从数据仓库而不是 Hadoop 体系的产品中长出来的:Codegen 是 Hyper 提出的技术,而...
20000字详解大厂实时数仓建设 | 社区征文{数据域缩写}:参考数据域划分部分- {自定义表命名标签缩写}:实体名称可以根据数据仓库转换整合后做一定的业务抽象的名称,该名称应该准确表述实体所代表的业务含义- 样例:realtime_dwd_trip_trd_order_base---#### 3. DIM 层- 公共维度层,基于维度建模理念思想,建立整个业务过程的一致性维度,降低数据计算口径和算法不统一风险;- DIM 层数据来源于两部分:一部分是 Flink 程序实时处理 ODS 层数据得到,另外一部分是通过...