ByteHouse+Apache Airflow:高效简化数据管理流程转换和加载(ETL)过程,减少手动工作量,实现更高效的数据管理。1. 简单的部署和管理:Apache Airflow 和 ByteHouse 均设计为简单的部署和管理。Airflow 可以部署在本地或云端,而 ByteHouse 提供完全托管的云原生数据仓库解决方案。这种组合使得数据基础设施的设置和维护变得无缝化。### 客户场景#### 业务场景在这个客户场景中,一家名为“数据洞察有限公司(假名)”的分析公司,他们将 Apache Airflow 作为数据管道编排工具。...
可视化建模概述1. 产品概述 可视化建模,是本产品提供的界面化、拖拽式数据处理与建模功能,通常这一能力被称为 ETL(Extract-Transform-Load),也可称之为数据建模。可视化建模,作为数据源和可视化展示的中间环节,能够让用户在可视化... 数据连接-->添加数据算子-->配置算子连接关系-->配置算子-->执行算子-->输出算子-->设置输出算子的存储方式。完整的学习课程,请见文档学习课程。 3. 核心功能 可视化建模可以将数据开发的过程产品化、工具化、可视...
应用场景本文为您介绍云原生消息引擎的典型应用场景,包括实时ETL、数据中转、日志分析等。 实时 ETL云原生消息引擎 BMQ 支持接入多种数据源,与流式计算 Flink 版相结合,实现数据的实时清洗、加载、转换,为应用决策系统实时... 数据类型不断成倍增长,如面向互联网广告业务场景的点击日志、大型分布式系统运行过程中采集的运维监控日志、网购平台的用户行为埋点日志等等。对于日志的异步传输,云原生消息引擎 BMQ 可结合 Flume 等日志采集工具...
干货 | 看 SparkSQL 如何支撑企业级数仓本文作者:惊帆 来自于数据平台 EMR 团队# 前言Apache Hive 经过多年的发展,目前基本已经成了业界构建超大规模数据仓库的事实标准和数据处理工具,Hive 已经不单单是一个技术组件,而是一种设计理念。Hive 有 JDB... 数仓在构建的时候通常需要 ETL 处理和分层设计,基于业务系统采集的结构化和非结构化数据进行各种 ETL 处理成为 DWD 层,再基于 DWD 层设计上层的数据模型层,形成 DM,中间会有 DWB/DWS 作为部分中间过程数据。从技...
浅谈数仓建设及数据治理 | 社区征文## 一、前言在谈数仓之前,先来看下面几个问题:### 1. 数仓为什么要分层?1. 用空间换时间,通过大量的预处理来提升应用系统的用户体验(效率),因此数据仓库会存在大量冗余的数据;不分层的话,如果源业务系统的业... 专题分析需求而计算生成的数据。数据仓库从各数据源获取数据及在数据仓库内的数据转换和流动都可以认为是ETL(**抽取Extra, 转化Transfer, 装载Load**)的过程,ETL是数据仓库的流水线,也可以认为是数据仓库的血液,...
「火山引擎」数智平台 VeDI 数据中台产品双月刊 VOL.05数据地图:新增 EMR Doris 元数据采集,并对 ByteHouse CDW 元数据采集进行标准化改造。支持字段探查,LAS 表编辑时不允许字段名和历史重复,支持检索新增的数据类型 EMR Doris。支持 EMR Doris 和 ByteHouse CDW 数据。 ### **/ 云原生数据仓库 ByteHouse /****【新增 ByteHouse 云数仓版功能】**- 支持生态集成页面,集中展示 BI 工具,ETL 工具和开发者工具的使用说明- 正式发布 MaterializedMySQL 支持从 MyS...
干货|揭秘字节跳动对Apache Doris 数据湖联邦分析的升级和优化数据聚合到数据仓库中,利用 MPP 等大规模并发技术对企业的数据进行分析,支撑上层的商业分析和决策。## 数据湖阶段数仓的主要特点是只能处理结构化数据。随着数据科学和人工智能的发展,产生了越来越多的非结构化数据,但非结构化数据在数仓中处理中相对麻烦,于是数据湖技术出现了。 数据湖可以被定义为一种存储各类原始数据的存储库,原始数据包含结构化、半结构化以及非结构化数据。一部分原始数据会经过 ETL 同步到数据集市...