浅谈大数据建模的主要技术:维度建模 | 社区征文也为我们后面讲Hadoop 数据仓库实战打下基础。## 维度建模关键概念### 度量和环境维度建模是支持对业务过程的分析,所以它是通过对业务过程度量进行建模来实现的。> **那么,什么是度量呢?**实际上,我们通过... 数据仓库模型设计中都会采用星形架构,但是在某些特殊情况下 ,比如必须使用桥接表的情况下等,必须使用雪花架构。## 维度建模一般过程维度建模一般采用具有顺序的 个步骤来进行设计,即选择业务过程、定义粒度、确...
ByteHouse:基于ClickHouse的实时数仓能力升级解读ByteHouse是火山引擎上的一款云原生数据仓库,为用户带来极速分析体验,能够支撑实时数据分析和海量数据离线分析。便捷的弹性扩缩容能力,极致分析性能和丰富的企业级特性,助力客户数字化转型。全篇将从两个版块讲解... 各种各样的数据源都可以通过Kafka或者Flink写入到ByteHouse里面,然后来对接上层的应用。按照数仓分层角度,Kafka、Flink可以理解为ODS层,那ByteHouse就可以理解为DWD和DWS层。如果说有聚合或者预计算的场景,也可以...
数仓进阶篇@记一次BigData-OLAP分析引擎演进思考过程 | 社区征文这些概念越来越火热,前些时候大部分工作集中在信创自主可控,现阶段已告一段落。信息化,数字化建设也是不可或缺的一环,遇到挑战,勇于迎对,不断的攻克技术难关是技术人的一种追求!数仓多维数据模型详细设计,欢迎一起... 兼顾数据仓库,具有实时,批处理,多并发等优点。**Java接入:** ![image.png]...
干货 | 看 SparkSQL 如何支撑企业级数仓本文作者:惊帆 来自于数据平台 EMR 团队# 前言Apache Hive 经过多年的发展,目前基本已经成了业界构建超大规模数据仓库的事实标准和数据处理工具,Hive 已经不单单是一个技术组件,而是一种设计理念。Hive 有 JDB... 数仓在构建的时候通常需要 ETL 处理和分层设计,基于业务系统采集的结构化和非结构化数据进行各种 ETL 处理成为 DWD 层,再基于 DWD 层设计上层的数据模型层,形成 DM,中间会有 DWB/DWS 作为部分中间过程数据。从技...
面向智能化BI分析平台建设的初步探索 | 社区征文### 1、BI的起源与发展 BI又称商业智慧或商务智能,是指用现代数据仓库技术、线上分析处理技术、数据挖掘以及数据展现技术进行数据分析以实现商业价值。 商业智能的概念最早在1996年由加特纳集团提出,加特纳集团在商业智能的定义中指出,商业智能描述了一系列的概念和方法,通过应用基于事实的支持系统来辅助商业决策的制定。商业智能技术提供使企业迅速分析数据的技术和方法,包括收集、管理和分析数据,并将这些数据转化为有...
20000字详解大厂实时数仓建设 | 社区征文滴滴数据团队建设的实时数仓,基本满足了顺风车业务方在实时侧的各类业务需求,初步建立起顺风车实时数仓,完成了整体数据分层,包含明细数据和汇总数据,统一了 DWD 层,降低了大数据资源消耗,提高了数据复用性,可对外输... {数据域缩写}_[{业务过程缩写}]_[{自定义表命名标签缩写}]`- {业务/pub}:参考业务命名- {数据域缩写}:参考数据域划分部分- {自定义表命名标签缩写}:实体名称可以根据数据仓库转换整合后做一定的业务抽象的名称...
干货|揭秘字节跳动对Apache Doris 数据湖联邦分析的升级和优化越来越多的企业使用数据仓库来处理企业产生的数据,发现数据的商业价值。 在这个时期,主要是将来自业务系统的多种结构化数据聚合到数据仓库中,利用 MPP 等大规模并发技术对企业的数据进行分析,支撑上层的商业分析和决策。## 数据湖阶段数仓的主要特点是只能处理结构化数据。随着数据科学和人工智能的发展,产生了越来越多的非结构化数据,但非结构化数据在数仓中处理中相对麻烦,于是数据湖技术出现了。 数据湖可以被定义为一...