You need to enable JavaScript to run this app.
最新活动
产品
解决方案
定价
生态与合作
支持与服务
开发者
了解我们

数据仓库通常分为四个层次

从数据接入、查询分析到可视化展现,提供一站式洞察平台,让数据发挥价值

域名注册服务

cn/com热门域名1元起,实名认证即享
1.00/首年起32.00/首年起
新客专享限购1个
立即购买

云服务器共享型1核2G

超强性价比,适合个人、测试等场景使用
9.90/101.00/月
新客专享限购1台
立即购买

CDN国内流量包100G

同时抵扣两种流量消耗,加速分发更实惠
2.00/20.00/年
新客专享限购1个
立即购买

数据仓库通常分为四个层次-优选内容

浅谈数仓建设及数据治理 | 社区征文
也就是数据驱动和赋能。### 3. 如何搭建一个好的数仓?1. **稳定**:数据产出稳定且有保障。2. **可信**:数据干净、数据质量高。3. **丰富**:数据涵盖的业务足够广泛。4. **透明**:数据构成体系足够透明。## 二、数仓设计 数仓设计的3个维度:- **功能架构**:结构层次清晰。- **数据架构**:数据质量有保障。- **技术架构**:易扩展、易用。### 1. 数仓架构按照数据流入流出的过程,数据仓库架构可分为:**源数...
数仓黄金价值圈: 为什么、是什么、怎么做|社区征文
今天给大家一起分享下有着悠久历史的数据仓库的一些思考由三部分组成为什么,搭建数据仓库是什么,数据仓库定义怎么做,如何搭建数仓# 一:为什么,搭建数据仓库最终目标:**数据驱动资源优化配置,即科学、高效... 数据仓库的数据主要供[企业决策](https://wiki.mbalib.com/wiki/%E4%BC%81%E4%B8%9A%E5%86%B3%E7%AD%96 "企业决策")分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(上)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** **近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。** 白皮书简述了 ByteHouse 基于 ClickHous... 企业级数据仓库场景中,需要融合来自多个业务系统数据库的业务数据,主要是交易记录,例如银行存取记录、用户订单记录等,通常是数千万至数亿条规模;用户行为日志是数据量最大的数据源,包括用户访问日志、用户操作记录...
ELT in ByteHouse 实践与展望
谈到数据仓库, 一定离不开使用Extract-Transform-Load (ETL)或 Extract-Load-Transform (ELT)。 将来源不同、格式各异的数据提取到数据仓库中,并进行处理加工。 传统的数据转换过程一般采用Extract-Transfor... =&rk3s=8031ce6d&x-expires=1702052413&x-signature=6WYk78rJ1WIGXdGGhEFhTekA4VA%3D)ByteHouse产品可以分为两个形态:1. **企业版**:PaaS模式、全托管、租户专属资源。1. **数仓版**:SaaS模式,在这个模式中...

数据仓库通常分为四个层次-相关内容

ByConity 技术详解之 ELT
谈到数据仓库, 一定离不开使用Extract-Transform-Load (ETL)或 Extract-Load-Transform (ELT)。 将来源不同、格式各异的数据提取到数据仓库中,并进行处理加工。传统的数据转换过程一般采用Extract-Transform-Load ... 加载至目的端(数据仓库)的过程。Transform通常描述在数据仓库中的前置数据加工过程。![picture.image](https://p6-volc-community-sign.byteimg.com/tos-cn-i-tlddhu82om/8ca3497b68f842f49087a948026a4131~tpl...
ByteHouse技术白皮书正式发布,云数仓核心技术能力首次全面解读
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。 在数字化浪潮下,伴随着公有云的广泛普... 《火山引擎云原生数据仓库 ByteHouse 技术白皮书》共分为五个章节,详细介绍了 ByteHouse 产品简介、技术趋势挑战、整体架构设计、核心技术解析、未来总结展望等技术内容。 本次发布的 ByteHouse 技术白皮书,...
如何快速从 ETL 到 ELT?火山引擎 ByteHouse 做了这三件事
数据通常源自多样的业务数据,这些数据系统大多采用以行为主的存储结构,比如支付交易记录、用户购买行为、传感器报警等。在数仓及分析领域,海量数据则主要采按列的方式储存。因此,将数据从行级转换成列级存储是建立企业数仓的基础能力。 传统方式是采用 Extract-Transform-Load (ETL)来将业务数据转换为适合数仓的数据模型,然而,这依赖于独立于数仓外的 ETL 系统,因而维护成本较高。但随着云计算时代的到来,云数据仓库具备更...
数仓进阶篇@记一次BigData-OLAP分析引擎演进思考过程 | 社区征文
通常用于进行离线数据处理操作-MapReduce,支持多种不同的执行引擎-Hive on MapReduce、Hive on Tez、Hive on Spark.![image.png](https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/f80852334aaf46dc82e9cb939... 兼顾数据仓库,具有实时,批处理,多并发等优点。![image.png](https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/54d03572d84c4a95a31bf3979818d997~tplv-k3u1fbpfcp-5.jpeg?)**Java接入:** ![image.png]...
干货|揭秘字节跳动对Apache Doris 数据湖联邦分析的升级和优化
全文分为三部分,首先介绍数据湖相关技术的演进,其次介绍 Apache Doris 数据湖联邦分析的整体设计和相关特性,最后介绍 Apache Doris 在数据湖联邦分析上的未来规划。# 1. 湖仓一体架构演进回顾湖仓一体的发展史,主要经历了三个阶段。第一个阶段是数据仓库,第二个阶段是数据湖,第三个阶段是湖仓一体。## 数据仓库阶段数据仓库是在上个世纪80年代兴起的一项技术。随着企业业务发展和大规模计算技术的发展,越来越多的企业使用...
ByteHouse:基于ClickHouse的实时数仓能力升级解读
ByteHouse是火山引擎上的一款云原生数据仓库,为用户带来极速分析体验,能够支撑实时数据分析和海量数据离线分析。便捷的弹性扩缩容能力,极致分析性能和丰富的企业级特性,助力客户数字化转型。全篇将从两个版块讲解... 已经上升到对实时数据分析能力的增强,以及对离线数仓的实时性的增强……在这么多的需求之下,中台团队应该怎么去评估和量化这个需求,进行数仓的优化?需求的评估和量化主要分为个层面,怎么样通过实时数仓来衡量...
干货 | 看 SparkSQL 如何支撑企业级数仓
企业数据仓库架构必然不等于一个组件,大部分企业在数仓架构实施的都是都是基于现有的部分方案,进行基于自己业务合适的方向进行部分开发与定制,从而达到一个半自研的稳态,既能跟上业务变化的速度,又不过于依赖和受限于组件自身的发展。一般来说企业级数仓架构设计与选型的时候需要从以下几个纬度思考:- 开发的便利性:所选择的数仓架构是否具有很好的开发生态,可以提供不同类型的开发态接口,不限于 SQL 编辑器,代码提交,以及...

体验中心

通用文字识别

OCR
对图片中的文字进行检测和识别,支持汉语、英语等语种
体验demo

白皮书

数据智能知识图谱
火山引擎数智化平台基于字节跳动数据平台,历时9年,基于多元、丰富场景下的数智实战经验打造而成
立即获取

最新活动

火山引擎·增长动力

助力企业快速增长
了解详情

数据智能VeDI

易用的高性能大数据产品家族
了解详情

新用户特惠专场

云服务器9.9元限量秒杀
查看活动

一键开启云上增长新空间

立即咨询