You need to enable JavaScript to run this app.
最新活动
产品
解决方案
定价
生态与合作
支持与服务
开发者
了解我们

数据仓库所存储的数据的特点

从数据接入、查询分析到可视化展现,提供一站式洞察平台,让数据发挥价值

域名注册服务

cn/com热门域名1元起,实名认证即享
1.00/首年起32.00/首年起
新客专享限购1个
立即购买

云服务器共享型1核2G

超强性价比,适合个人、测试等场景使用
9.90/101.00/月
新客专享限购1台
立即购买

CDN国内流量包100G

同时抵扣两种流量消耗,加速分发更实惠
2.00/20.00/年
新客专享限购1个
立即购买

数据仓库所存储的数据的特点-优选内容

火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(上)
数据仓库产品,在开源 ClickHouse 引擎之上做了技术架构重构,实现了云原生环境的部署和运维管理、存储计算分离、多租户管理等功能。在可扩展性、稳定性、可运维性、性能以及资源利用率方面都有巨大的提升。 截至 2022 年 2 月,ByteHouse 在字节跳动内部部署规模超过 1 万 8000 台,单集群超过 2400 台。经过内部数百个应用场景和数万用户锤炼,并在多个外部企业客户中得到推广应用。## 产品特性**ByteHouse 以提供高性能、...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(中)
云原生数据仓库 ByteHouse 总体架构图如上图所示,设计目标是实现高扩展性、高性能、高可靠性、高易用性。从下往上,总体上分服务层、计算层和存储层。## 服务层服务层包括了所有与用户交互的内容,包括用户管理、身份验证、查询优化器,事务管理、安全管理、元数据管理,以及运维监控、数据查询等可视化操作功能。 **服务层主要包括如下组件:**- **资源管理器**资源管理器(Resource Manager)负责对计算资源进行统一的...
字节跳动基于数据湖技术的近实时场景实践
存储方面,成本比较低廉,且容量可扩展性强。与传统数仓建模使用的schema on write 模式相比,数据湖采用了一种 schema on read 的模式,即不会事先对它的 schema 做过多的定义,而是在使用的时候才去决定 schema,从而支持上游更丰富、更灵活的应用。2. ## **字节**数据湖Apache Hudi有下面非常重要的特性:- Hudi不仅仅是数据湖的一种存储格式(Table Format),而是提供了Streaming 流式原语的、具备数据库、 数据仓库核心...
浅谈数仓建设及数据治理 | 社区征文
数据仓库的建模方法有很多种,*每一种建模方法代表了哲学上的一个观点*,代表了一种归纳、概括世界的一种方法。常见的有 **范式建模法、维度建模法、实体建模法**等,*每种方法从本质上将是从不同的角度看待业务中的问题*。#### 1) 范式建模法范式建模法其实是我们在构建数据模型常用的一个方法,该方法的主要由 Inmon 所提倡,主要解决关系型数据库的数据存储,利用的一种技术层面上的方法。目前,我们在关系型数据库中的建模方法,大...

数据仓库所存储的数据的特点-相关内容

火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅲ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群**近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。以下为 ByteHouse 技术白皮书**作业执行流程版块**摘录。技术白皮书(上...
干货|揭秘字节跳动对Apache Doris 数据湖联邦分析的升级和优化
发现数据的商业价值。 在这个时期,主要是将来自业务系统的多种结构化数据聚合到数据仓库中,利用 MPP 等大规模并发技术对企业的数据进行分析,支撑上层的商业分析和决策。## 数据湖阶段数仓的主要特点是只能处理结构化数据。随着数据科学和人工智能的发展,产生了越来越多的非结构化数据,但非结构化数据在数仓中处理中相对麻烦,于是数据湖技术出现了。 数据湖可以被定义为一种存储各类原始数据的存储库,原始数据包含结构化、...
基于火山引擎 EMR 构建企业级数据湖仓
都是从数据仓库而不是 Hadoop 体系的产品中长出来的:Codegen 是 Hyper 提出的技术,而向量化则是 MonetDB 提出的,所以计算引擎的精细化也是沿着数仓开辟的路子在走。Spark 等 Hadoop 体系均走了 Codegen 的道路,因为 Java 做 Codegen 比做向量化要更容易一些。但是现在人们发现可能向量化是一个更好的选择,向量化可以一次处理一批数据,而不只是一条数据。其好处是可以充分利用 CPU 的一些特性,比如 SIMD,Pipeline 执行等。### *...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅳ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群**近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。以下为 ByteHouse 技术白皮书【数据导入导出】版块摘录。技术白皮书(Ⅰ)(Ⅱ...
浅谈大数据建模的主要技术:维度建模 | 社区征文
业务过程的所有度量在维度建模中都是存储在事实表中的,除此之外,事实表还存储了引用的维度。事实表通常和一个 **企业的业务过程** 紧密相关,由于一个企业的业务过程数据构成了其所有数据的绝大部分,因此事实表也通常占用了数据仓库存储的绝大部分。比如对于某个超市来说,其 **销售的明细数据** 通常占其拥有数据的绝大部分且每天还在不断地累计和增长,而商品、门店、员工、设备等其他数据相对来说固定且变化不大。> **事实...
以 100GB SSB 性能测试为例,通过 ByteHouse 云数仓开启你的数据分析之路
ByteHouse 作为云原生的数据平台,从架构层面入手,通过存储和计算分离的云原生架构完美适配云上基础设施。在字节跳动内部,ByteHouse 已经支持 80% 的分析应用场景,包括用户增长业务、广告、A/B 测试等。除了极致的分析性能之外,ByteHouse 开箱即用,按实际使用付费的特性也极大地降低了企业和个人的上手门槛,能够在短短数分钟内体验到数据分析的魅力。 Talk is cheap, 接下来就让我们通过一个实战案例来体验下 ByteHouse 云数...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅴ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 **以下为 ByteHouse 技术白皮书【多租户管理、运维监控管理】版块摘...

体验中心

通用文字识别

OCR
对图片中的文字进行检测和识别,支持汉语、英语等语种
体验demo

白皮书

数据智能知识图谱
火山引擎数智化平台基于字节跳动数据平台,历时9年,基于多元、丰富场景下的数智实战经验打造而成
立即获取

最新活动

火山引擎·增长动力

助力企业快速增长
了解详情

数据智能VeDI

易用的高性能大数据产品家族
了解详情

新用户特惠专场

云服务器9.9元限量秒杀
查看活动

一键开启云上增长新空间

立即咨询