基于 Ray 的大规模离线推理> 本文整理自字节跳动基础架构资深研发工程师王万兴在火山引擎开发者社区 Meetup 中的分享。大模型离线推理,是指在具有数十亿或数千亿参数的大规模模型上进行分布式推理的过程。相较于常规模型推理,在模型切分、数... 在 Raylet 这一层做了非常多的设计,实现过程也比较复杂,感兴趣的朋友可以 [参考此链接](https://docs.google.com/document/d/1tBw9A4j62ruI5omIJbMxly-la5w4q_TjyJgJL_jN2fI/preview)。## Ray 分布式编程,是指在具有数十亿或数千亿参数的大规模模型上进行分布式推理的过程。相较于常规模型推理,它在模型切分、数据处理和数据流、提升 GPU 利用率方面面临着很大的挑战。![picture.image]... 在 Raylet 这一层做了非常多的设计,实现过程也比较复杂,感兴趣的朋友可以查看相关论文。 **Ray 分布式编程**上图是一个较为完整的文生图模型推理业务架...
模型的性能评估及优化当用户想充分了解某个模型的推理效率时,【模型管理】提供了相应的性能评估功能,支持对格式为 SavedModel、TorchScript 的模型进行全面的耗时评估并且能给出对应的模型优化建议。 相关概念 Tensor 配置 使用前提 支持性能评估的模型:格式为 SavedModel 且 TensorFlow 的版本为 1.14 ~ 2.4。 格式为 TorchScript 且 PyTorch 的版本为 1.5 ~ 1.8。 发起性能评估之前,需要填写模型的 Tensor 配置。 存在未结束的评估任务时无法发起新...