t.tensorpytorch-优选内容
模型的性能评估及优化
当用户想充分了解某个模型的推理效率时,【模型管理】提供了相应的性能评估功能,支持对格式为 SavedModel、TorchScript 的模型进行全面的耗时评估并且能给出对应的模型优化建议。 相关概念 Tensor 配置 使用前提 支持性能评估的模型:格式为 SavedModel 且 TensorFlow 的版本为 1.14 ~ 2.4。 格式为 TorchScript 且 PyTorch 的版本为 1.5 ~ 1.8。 发起性能评估之前,需要填写模型的 Tensor 配置。 存在未结束的评估任务时无法发起...
预置镜像列表
机器学习开发中镜像用于提供开发所需的运行环境,机器学习平台为用户提供了包括 Python、CUDA、PyTorch、TensorFlow、BytePS 等多种依赖的预置镜像供用户直接使用。 相关概念 镜像 预置镜像列表 Python Python 是目前机器学习研究和开发中最常用的编程语言之一,该语言可读性强且拥有丰富的软件库(如 scikit-learn、numpy 等)。平台基于原版 Ubuntu 镜像安装了不同版本的 Miniconda Python(3.7+),内置了常用开发工具,同时 pip、c...
将模型部署成服务
目前平台支持的预置推理引擎有:TFServing:适用于 TensorFlow 的模型。 TritonServer:适用于 PyTorch、ONNX、TensorRT 的模型。 Groot:适用于 XGBoost 和 LightGBM 的模型。 若选择非预置镜像,支持用户自主选择模型,模型与镜像需要匹配。 模型 服务使用的模型及版本。 选填 。 入口命令 镜像的启动命令。选填。 环境变量 将被注入到容器实例中的环境变量。 选填 。 环境变量 key 值仅支持大小写字母、数字、下划线,且不能以数...
通过工作流串联训练与评测任务
该工作流使用PytorchDDP框架拉起一个多机GPU训练任务,并在训练结束将模型文件存储到TOS。然后拉起一个单机CPU任务,读取训练好的模型文件,在测试数据集上进行模型效果的评估。 开发训练与评估代码 假设用户已在开发... [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])batch_size = 4classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')...
t.tensorpytorch-相关内容
【MindStudio训练营第一季】MindStudio 高精度对比随笔
# MindStudio精度对比简介> 原因:训练场景下,迁移原始网络 (如TensorFlow、PyTorch) ,用于NPU上执行训练,网络迁移可能会造成自有实现的算子运算结果与用原生标准算子运算结果存在偏差。推理场景下, ATC模型转换过程对模型进行优化,包括算子消除、算子融合算子拆分,这些优化也可能会造成自有实现的算子运算结果与原生标准算子(如TensorFlow、ONNX、 Caffe ) 运算结果存在偏差。为了帮助开发人员快速解决算子精度问题,需要提...
使用pytorch自己构建网络模型总结|社区征文
前段时间在Git上下载了yolov5的代码,经过调试,最后运行成功。但是发现对网络训练的步骤其实很不熟悉,于是乎最近看了看基于pytorch的深度学习——通过学习,对pytorch的框架有了较清晰的认识,也可以自己来构建一些模... ```python#1、准备数据集train_dataset = torchvision.datasets.CIFAR10("./data", train=True, transform=torchvision.transforms.ToTensor(), download=Ture)test_dataset = torchvision.datasets.CIFAR10("....
发起单机 / 分布式训练任务
【自定义训练】除了支持单机训练任务之外,还预置了 TensorFlowPS、PyTorchDDP、BytePS 等多种分布式训练范式的配置模板,用户简单配置训练角色的数量及实例规格后即可发起大规模的分布式训练任务。 相关概念 自定义训练 资源组 / 实例 TensorFlowPS PyTorchDDP BytePS MPI 使用前提 使用预付费(专有)队列时,拥有 >= 1 个预付费队列的使用权限。 操作步骤 平台支持通过控制台(Web 页面)和命令行工具发起训练任务,下文将分别介绍...
【MindStudio训练营第一季】MindStudio 可视化AI应用开发体验随笔
# MindStudioMindStudio 提供一站式AI开发环境,依靠工具与性能调优,采用插件化扩展机制,打造高效、便捷的全流程开发工具链。目前最新版本是5.0.RC3,发布于2022年20月,对应的昇腾社区版本:6.0.RC1。新增众多特性,这里主要介绍两个我非常感兴趣的分析迁移和。## 分析迁移- X2MindSpore工具新增已验证支持的PyTorch模型49个,TensorFlow 1.x模型20个,TensorFlow 2.x模型20个。- X2MindSpore工具中TensorFlow1.x新增支持混合精...
导入模型
TorchScript、ONNX 等多种模型格式。 * 每种模型格式的目录结构详见模型包规范。 模型框架 * 选择模型的训练框架及版本。 必填 。 * 支持 TensorFlow、PyTorch、XGBoost 等多种框架和版本。 上传文件 * 支持通过上传本地文件(即将上线)或者选择 TOS 中包含模型的目录。 必填 。 * 由于模型文件将上传至对象存储(TOS),请参考开通相关服务一键授予机器学习平台访问用户 TOS 的权限。 Tensor 配置 * 模型的输入输出配置。选填...
火山引擎大规模机器学习平台架构设计与应用实践
包括数据并行的框架(TensorflowPS、Horovod、PyTorchDDP、BytePS 等),模型并行的框架(Megatron-LM、DeepSpeed、veGiantModel 等),HPC 框架(Slurm、MPI 等)以及其他框架(SparkML、Ray 等)。不同的训练框架有各自的调度和资源要求,这就给底层基础设施带来一些挑战。#### 存储侧存储可以认为是机器学习的刚需,在存储侧面临的挑战也很大:- 高性能和扩展性:现在的硬件计算能力越来越快,读数据的吞吐需要跟上高性能的计算,对存...
火山引擎大模型训练框架 veGiantModel 开源,性能最高提升 6.9 倍!
(https://huggingface.co/blog/large-language-models))# 火山引擎大模型训练框架 veGiantModel针对这个需求,字节跳动 AML 团队内部开发了火山引擎大模型训练框架 veGiantModel。基于 PyTorch 框架,veGiantM... global batch size 是 1536。 GPT 为目前市面上最为流行的 transformer based 语言模型。性能对照组选择了开源社区最流行的 Megatron 和 DeepSpeed。## 测试结果- 模型:GPT-13B- Megatron:v2.4,tensor-...