ChatGLM-130B API调用指南ChatGLM-130B 参考了 ChatGPT 的设计思路,在千亿基座模型 GLM-130B 中注入了代码预训练,通过有监督微调(Supervised Fine-Tuning)等技术实现人类意图对齐。ChatGLM 当前版本模型的能力提升主要来源于独特的千亿基座模型 GLM-130B。它是不同于 BERT、GPT-3 以及 T5 的架构,是一个包含多目标函数的自回归预训练模型。本文详细介绍了 ChatGLM-130B 的SDK及API使用方法。 API HostHost:maas-api.ml-platform-cn-beijing.volces.comReg...
大模型时代,企业如何榨干每一块 GPU?以 ChatGPT 为代表的 AIGC 浪潮正在重塑数字内容的生产方式和消费模式,相应的,各行业高算力业务场景对 AI 算力的需求也水涨船高。在有限算力的情况下,通过 GPU 算力上云,驱动云原生 + AI 实现算力资源的快速弹性和高效使用,已经成为 AI 技术落地的新基石。当前,在异构计算场景下,云原生在资源灵活分配方面已经具备标准化能力,然而,这一能力并不能直接在 GPU 资源上复用。在保障性能和安全的前提下,如何进一步提高 GPU 的利用率...
ChatGLM-6B API 调用指南ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,ChatGLM-6B 已经能生成相当符合人类偏好的回答。本文详细介绍了 ChatGLM-6B 的SDK及API使用方法。 API HostHost:maas-api.ml-platform-cn-beijing.v...
图谱构建的基石: 实体关系抽取总结与实践|社区征文# 引言作为一个专注于NLP的算法技术团队,我们一直致力于知识智能在各业务场景的价值落地,随着NLP技术的逐渐演变:从词表为王到词向量,再到以BERT为代表的预训练模型,再到最近横空出世的ChatGPT,让“技术赋能业务”逐渐成为了现实。在一些常见的NLP任务中,有一类任务扮演了举足轻重的作用,也是当下的研究热点,这类任务就是:实体关系抽取,目的是从自然语言文本中识别并判定实体对之间存在的特定关系,为智能检索、语义分析等提供基...
CVer从0入门NLP——GPT是如何一步步诞生的|社区征文# CVer从0入门NLP——GPT是如何一步步诞生的## 写在前面> Hello,大家好,我是小苏👦🏽👦🏽👦🏽>之前的博客中,我都为大家介绍的是计算机视觉的知识,随着ChatGPT的走红,越来越多的目光聚焦到NLP领域,那么今天准... 我们谈到其存在长距离依赖的问题,为了解决这一问题,LSTM应运而生。那就让我们一起来见识见识LSTM是怎么实现的,如下图所示:![picture.image](https://p3-volc-community-sign.byteimg.com/tos-cn-i-tlddhu82om/8b...
初见腾讯混元大模型,请多指教|社区征文混元者,元气未分,混沌为一,元气之始也!混元无所不包,无所不有,意思就是形容内容丰富,应有尽有,从名称来看,腾讯对于混元大模型是寄予厚望的。想必大家对大模型并不陌生,自从去年OpenAI发布ChatGPT以来,我们对于大模型的智能感到震撼,国内大模型的数量也在急剧上升,大模型的百团大战已经悄然开始。我体验过不少大模型,像文心一言、讯飞星火、通义千问等等,我也一直特别期待腾讯的大模型,在9月7号这一天,鹅厂的通用大模型终于来了。...
GPU-部署基于DeepSpeed-Chat的行业大模型本文以搭载了一张A100显卡的ecs.pni2.3xlarge为例,介绍如何在GPU云服务器上进行DeepSpeed-Chat模型的微调训练。 背景信息DeepSpeed-Chat简介 DeepSpeed-Chat是微软新公布的用来训练类ChatGPT模型的一套代码,该套代码基于微软的大模型训练工具DeepSpeed,通过使用它可以非常简单高效地训练属于自己的ChatGPT。DeepSpeed-Chat具有以下特点: 完整的训练类ChatGPT的代码:包括预训练模型下载、数据下载、InstructGPT训练过程和测试。 多...