分类的深度学习-优选内容
AI安全技术总结与展望| 社区征文
大家好,我是 herosunly。985 院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池安全恶意程序检测第一名,科大讯飞恶意软件分类挑战赛第三名,CCF 恶意软件家族分类第四名,科大讯飞阿尔茨海默综合症预测挑战赛第四名,科大讯飞事件抽取挑战赛第七名,Datacon 大数据安全分析比赛第五名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。今天给大家分享的是AI安全技术总结与展望,欢迎大家...
人工智能之自然语言处理技术总结与展望| 社区征文
大家好,我是 herosunly。985 院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池安全恶意程序检测第一名,科大讯飞恶意软件分类挑战赛第三名,CCF 恶意软件家族分类第四名,科大讯飞阿尔茨海默综合症预测挑战赛第四名,科大讯飞事件抽取挑战赛第七名,Datacon 大数据安全分析比赛第五名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。今天给大家分享的是人工智能之自然语言处理技术总...
AI赋能安全技术总结与展望| 社区征文
大家好,我是 herosunly。985 院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池安全恶意程序检测第一名,科大讯飞恶意软件分类挑战赛第三名,CCF恶意软件家族分类第四名,科大讯飞阿尔茨海默综合症预测挑战赛第四名,科大讯飞事件抽取挑战赛第七名,Datacon 大数据安全分析比赛第五名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。今天给大家分享的是AI赋能安全技术总结与展望,欢迎...
GPU计算型
概述GPU计算型实例基于多种NVIDIA Tesla显卡,在各类推理场景及分子计算场景下提供高性价比。适用于深度学习及AI推理训练,如图像处理、语音识别等人工智能算法的训练应用。 说明 您可以在价格计算器页面,查看实例的... 性能越强 适用场景 深度学习训练和推理,例如图像分类、无人驾驶、语音识别等人工智能算法的训练应用。 高GPU负载的科学计算,例如高性能数据库、计算流体动力学、计算金融学、地震分析、基因组学等。 规格列表 实例...
分类的深度学习-相关内容
如何用pytorch进行目标检测和跟踪
随着深度学习技术的不断发展,在图像识别领域的性能有了显著提高。不仅仅可以用来识别静态图像中的物体,还可以对视频中的物体进行实时的检测和跟踪,这里使用的是pytorch来进行模型的搭建以及物体的检测和跟踪。首先,要明确的是目标检测和跟踪的网络架构,一般会使用一个专门的检测模型来进行物体的检测,并生成检测结果,之后使用跟踪模型来进行物体位置的实时跟踪。对于检测模型,比较常用的是Faster-RCNN,它通过分类来检出图片中...
保姆级人工智能学习成长路径|社区征文
大家好,我是 herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池安全恶意程序检测第一名,科大讯飞恶意软件分类挑战赛第三名,CCF恶意软件家族分类第4名,科大讯飞阿尔茨海默综合症预测赛第4名,Datacon大数据安全分析比赛第五名,科大讯飞事件抽取挑战赛第七名。拥有六项发明专利。对机器学习和深度学习拥有自己独到的见解。今天给大家分享的是保姆级人工智能学习成长路径,希望能对大...
使用pytorch自己构建网络模型总结|社区征文
> 🍊作者简介:[秃头小苏](https://juejin.cn/user/1359414174686455),致力于用最通俗的语言描述问题>> 🍊专栏推荐:[深度学习网络原理与实战](https://juejin.cn/column/7138749154150809637)>> 🍊近期目标:写好... 这些图片都有一个自己所属的类别(如airplane、cat等),如下图所示:比赛结果公布,首次参赛的火山引擎视频云多媒体实验室夺得视频压缩赛道第一名。压缩技术对于图像、视频应用十分重要。在保证同样的质量前提下,如何将图像压缩到更小的体积便于互联网信息传输,火山引擎视频云团队不断突破压缩技术“天花板”。当前字节跳动高峰期每秒需处理近百万张图片,基于今日头条、抖音等亿级 DAU 的实践打磨,与国际领先的压缩技术...
ImageNet图像分类-01-MobileNet-ONNX
ImageNet图像分类-01-MobileNet-ONNX 基于 ImageNet 数据集,可以对 1000 个类别的物体进行分类。 MobileNet 是一种轻量化的卷积神经网络模型,旨在在计算资源有限的设备上实现高效的图像分类和目标识别。 MobileNet 通过使用深度可分离卷积来减少模型中的参数数量,从而大大减小了模型的大小和计算复杂度。深度可分离卷积由深度卷积和逐点卷积两部分组成,可以降低计算复杂度,同时减小模型的大小和内存占用。 MobileNet 还包括其他优...