深度学习卷积神经网络大事件一览-优选内容
人工智能之自然语言处理技术总结与展望| 社区征文
尤其是通过编程去处理和分析大量的自然语言数据。如果将自然语言处理领域进行细分,那么它包括自然语言理解(NLU)、自然语言生成(NLG)两大子领域。细分领域包括文本分类、命名实体识别、关系抽取、事件抽取、文本摘要、阅读理解、知识图谱构建等领域。 近些年来,基于有标记数据的监督学习是研究的重点,例如随着深度学习蓬勃发展而产生的的神经网络架构:前馈神经网络(FNN)、卷积神经网络(CNN)和循环神经网络(RNN)。但由于人工标...
ImageNet图像分类-01-MobileNet-ONNX
ImageNet图像分类-01-MobileNet-ONNX 基于 ImageNet 数据集,可以对 1000 个类别的物体进行分类。 MobileNet 是一种轻量化的卷积神经网络模型,旨在在计算资源有限的设备上实现高效的图像分类和目标识别。 MobileNet 通过使用深度可分离卷积来减少模型中的参数数量,从而大大减小了模型的大小和计算复杂度。深度可分离卷积由深度卷积和逐点卷积两部分组成,可以降低计算复杂度,同时减小模型的大小和内存占用。 MobileNet 还包括其他优...
保姆级人工智能学习成长路径|社区征文
大家好,我是 herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池安全恶意程序检测第一名,科大讯飞恶意软件分类挑战赛第三名,CCF恶意软件家族分类第4名,科大讯飞阿尔茨海默综合症预测赛第4名,Datacon大数据安全分析比赛第五名,科大讯飞事件抽取挑战赛第七名。拥有六项发明专利。对机器学习和深度学习拥有自己独到的见解。今天给大家分享的是保姆级人工智能学习成长路径,希望能对大...
AI赋能安全技术总结与展望| 社区征文
科大讯飞恶意软件分类挑战赛第三名,CCF恶意软件家族分类第四名,科大讯飞阿尔茨海默综合症预测挑战赛第四名,科大讯飞事件抽取挑战赛第七名,Datacon 大数据安全分析比赛第五名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。今天给大家分享的是AI赋能安全技术总结与展望,欢迎大家在评论区留言,和大家一起成长进步。# 1. 背景 伴随着人工智能技术的蓬勃发展,当前网络空间已经迈进到人工智能时代。人工智能对网...
深度学习卷积神经网络大事件一览-相关内容
开放的AI基建,让AI普惠更进一步
两个通用平台又构建在一个统一的机器学习系统之上,机器学习系统主要给上层提供了分布式的推理和调度能力,构建在更底层的计算网络、存储等基础设施之上。 为什么需要构建一个统一、开放的AI基建呢?核心原因是希望能... 部署和扩展最先进的深度学习推荐系统,成本显著降低,同时任务延迟也大大减少。AI 识别引擎:火山拍照识别功能包括了对常见的动植物、地标建筑、商品等 10 万+类事物的识别,训练任务繁重持久,对于推理速度要求也非常高...
从100w核到450w核:字节跳动超大规模云原生离线训练实践
抖音搜索等业务的超大规模深度学习训练——以上场景的机器学习训练均是基于 **Primus** **训练框架**完成。整个机器学习生态**从上到下分为“平台层”“框架层”“资源层”** 3个部分。字节跳动算法工程师使用 R... **网络不匹配**:需要解决服务化 PS 与 YARN 训练资源之间的跨机房、跨网段导致的通讯开销。,致力于用最通俗的语言描述问题>> 🍊专栏推荐:[深度学习网络原理与实战](https://juejin.cn/column/7138749154150809637)>> 🍊近期目标:写好... 本篇文章主要总结神经网络的完整的模型训练套路,希望通过本篇文章可以让你对网络训练步骤有一个清晰的认识。 本次内容用到的数据集是[CIFAR10](https://www.cs.toronto.edu/~kriz/cifar.html),使用这个...
我的AI学习之路----拥抱Tensorflow 拥抱未来|社区征文
接下来大家跟随我的脚步来一步步走进我和TensorFlow的世界吧,去了解和使用它~相信你也一定可以爱上TensorFlow!# 一、TensorFlow的简介TensorFlow是由谷歌人工智能团队谷歌大脑开发和维护的深度学习平台,目前人... 我开始跟随着谷歌的基于TensorFlow的机器学习速成课程(中文版) 开始一步步学习TensorFlow框架。## 2.学习TensorFlow跟随着课程的学习,我更加对TensorFlow感兴趣啦!按照该课程所述,我自学了初级代数知识,如变量...
RTC 端到端视频体验优化技术实践与探索
目前学术界的方式都是用深度学习卷积神经网络去训练超分模型,不可避免地,这是一个计算量非常大的操作,计算量大会限制超分的分辨率和运行设备,比如限制在比较低的[分辨率](https://xie.infoq.cn/article/1161506f1e55b2e399f5130f2 "xxx"),或者一些超分模型只能限制在一些高端机上使用,低端机上跑不动。 其次是所有类似的后处理技术都会面临的一个问题:如何衡量超分做得好不好?线上打开超分后,我们非常需要知道,超分到底让画...
音视频技术如何为元宇宙提供全真稳的全新体验之漫话腾讯云音视频 | 社区征文
基于先进的轻量级神经网络,腾讯云音视频提供将3min以内带噪语音去除噪声的服务,具有速度快、效果好的优点,广泛应用于语音采集过程、语音后期应用预处理等领域。**除了更低码率更高画质,视频增强也是音视频领域的重要技术点**。腾讯云音视频实现了超分、片源修复,以提升视频画质。腾讯明眸研究团队的画质增强研究工作主要是应用到编码优化前的前置处理阶段,提供了画质修复和增强的能力。通过传统算法和深度学习模型消除片源中的...
GPU-部署NGC环境
NGC介绍 NGC(NVIDIA GPU CLOUD)是NVIDIA开发的一套深度学习容器库,具有强大的性能和良好的灵活性,可以帮助科学家和研究人员快速构建、训练和部署神经网络模型。NGC官网提供了当前主流深度学习框架的镜像,例如Caffe、TensorFlow、Theano、Torch等。 操作场景 本文介绍如何在Linux实例上基于NGC部署TensorFlow。 软件版本 操作系统:本文以Ubuntu 18.04为例。 NVIDIA驱动:GPU驱动:用来驱动NVIDIA GPU卡的程序。本文以470.57.02为例。...