深度学习相对机器学习的优势-优选内容
字节跳动 EB 级 Iceberg 数据湖的机器学习应用与优化
训练一个机器学习模型可能需要数周甚至数月的时间。然而,如今基于更好的模型架构和高速显卡,我们可以在相对较短的时间内完成训练过程并进行 A/B 测试验证。另外,**特征工程** **越来越自动化、** **端到端** **化**。在传统的机器学习中,特征工程是非常重要的一环,通常需要大量的人工、时间和精力来处理数据和特征。而随着深度学习的发展,我们可以利用深度学习的特征提取能力,通过简单的数据处理步骤自动学习特征,甚至可以将过...
AI赋能安全技术总结与展望| 社区征文
对机器学习和深度学习拥有自己独到的见解。今天给大家分享的是AI赋能安全技术总结与展望,欢迎大家在评论区留言,和大家一起成长进步。# 1. 背景 伴随着人工智能技术的蓬勃发展,当前网络空间已经迈进到人工智能... 深度学习可用于直接训练原始数据而无需手动提取特征。深度学习可以发现数据之间的非线性相关性。由于具有很强的泛化能力,深度学习模型可以支持新文件类型和未知攻击的检测,这在网络安全防御中是非常明显的优势。近...
保姆级人工智能学习成长路径|社区征文
大家好,我是 herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池安全恶意程序检测第一名,科大讯飞恶意软件分类挑战赛第三名,CCF恶意软件家族分类第4名,科大讯飞阿尔茨海默综合症预测赛第4名,Datacon大数据安全分析比赛第五名,科大讯飞事件抽取挑战赛第七名。拥有六项发明专利。对机器学习和深度学习拥有自己独到的见解。今天给大家分享的是保姆级人工智能学习成长路径,希望能对大...
AI安全技术总结与展望| 社区征文
对机器学习和深度学习拥有自己独到的见解。今天给大家分享的是AI安全技术总结与展望,欢迎大家在评论区留言,和大家一起成长进步。 本文将从AI安全分类、AI安全应用、AI安全面临的威胁、AI安全事件、AI安全公司... TensorFlow等都属于深度学习工具,简单来说就是库,编程时需要import caffe、import tensorflow。做一个比喻,学习框架就像是品牌的积木,各组件就是魔心过着算法的一部分,我们可以自己设计如何堆砌,优点是无需重复造就...
深度学习相对机器学习的优势-相关内容
万字长文带你弄透Transformer原理|社区征文
> 🍊作者简介:[秃头小苏](https://juejin.cn/user/1359414174686455),致力于用最通俗的语言描述问题>> 🍊专栏推荐:[深度学习网络原理与实战](https://juejin.cn/column/7138749154150809637)>> 🍊近期目标:写好... 即transformer结构有什么优势呢?在NLP中,在transformer出现之前,主流的框架是RNN和LSTM,但这些框架都有一个共同的缺陷,就是程序难以并行化。举个例子,我们期望用RNN来进行语言的翻译任务,即输入`I Love China`,输出...
转型,技术人绕不开的坎
看来机器学习专家也不是那么好当的😂。如果转人工智能,自己4年的工作经验基本没有太大优势,需要从头开始学习,风险太大。从内心来说,我还是一个比较保守的人,再三思考之后,决定先学习H5吧。我们公司有成熟的H5开发环境,遇到不懂的还可以向其他同事请教,相对来说转型成本比较低。接下来就毫无悬念了,在公司业务繁忙,人手不够的时候我会兼任一些H5的开发工作。基本算是从小白开始吧,如果有相同经历或者想学习H5开发的同学,可以参考...
我的AI学习之路----拥抱Tensorflow 拥抱未来|社区征文
谷歌的TensorFlow机器学习框架,真的是在一直伴随着我的学习生活,给了我很多帮助,也带着我一步步走进人工智能的神秘世界,打开一个又一个奇妙的故事。接下来大家跟随我的脚步来一步步走进我和TensorFlow的世界吧,去了解和使用它~相信你也一定可以爱上TensorFlow!# 一、TensorFlow的简介TensorFlow是由谷歌人工智能团队谷歌大脑开发和维护的深度学习平台,目前人工智能领域主流的开发平台,在全球有着广泛的用户群体。## 如何理解深度学习常...
字节跳动智能音频信号处理的应用实践
## 音频信号处理发展趋势从我这些年的工作过程中,我把音频信号处理分为了三个大的部分:- 最基础的部分是算法,包括自适应滤波器、阵列信号处理以及心理声学和深度学习等算法技术。- 算法基础可以保证上层关... **声场分析**:需要对声源的相对位置、声源路径和声音种类做判断。- **声源提取**:需要对视频画面中的各个声源进行提取。利用声源分割/分离、波束形成、多模态语音增强等技术,对视频画面中的各个音源进行针对...
我的技术年终总结——机器学习 |社区征文
## 一、机器学习是什么?- 从广义上来说,机器学习是一种能够赋予机器学习的能力以此让它完成直接编程无法完成的功能的方法。但从实践的意义上来说,机器学习是一种通过利用数据,训练出模型,然后使用模型预测的一种... 用一个相对低维的向量来表示原始高维度的特征。- 密度估计是是概率统计学的基本问题之一,就是由给定样本集合求解随机变量的分布密度函数问题。大多数人已经熟悉了其中一种常用的密度估计技术:直方图。- 排序...