数据仓库结构包括-优选内容
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(中)
云原生数据仓库 ByteHouse 总体架构图如上图所示,设计目标是实现高扩展性、高性能、高可靠性、高易用性。从下往上,总体上分服务层、计算层和存储层。## 服务层服务层包括了所有与用户交互的内容,包括用户管理、身份验证、查询优化器,事务管理、安全管理、元数据管理,以及运维监控、数据查询等可视化操作功能。 **服务层主要包括如下组件:**- **资源管理器**资源管理器(Resource Manager)负责对计算资源进行统一的...
数仓黄金价值圈: 为什么、是什么、怎么做|社区征文
而数据仓库是**有序**还原物理世界的一种**载体****有序**是核心,也是数据仓库的**价值所在**,那如何判断有序是关键,我们可以反过来想,有序的反面是无序,那我们判断无序程度,来反向证明有序度。那如何判断无序程序,不能绕过去的一个概念“熵”,它代表一个系统的混乱程度,熵增越大,代表无序程度越高。如何对抗熵增,是数据仓库的一个重要命题,**耗散结构**是最好的方式首先来看下耗散结构的定义所谓耗散结构就是包含多基...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(上)
《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。** 白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化... 企业级数据仓库场景中,需要融合来自多个业务系统数据库的业务数据,主要是交易记录,例如银行存取记录、用户订单记录等,通常是数千万至数亿条规模;用户行为日志是数据量最大的数据源,包括用户访问日志、用户操作记录...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅳ)
《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。以下为 ByteHouse 技术白皮书【数据导入导出】版块摘录。技术白皮书(Ⅰ)(Ⅱ)(Ⅲ)精彩回顾: ## ByteHouse 数据导入导出ByteHouse 包括一个数据导入导出(Data Express)模块,负责...
数据仓库结构包括-相关内容
干货 | 看 SparkSQL 如何支撑企业级数仓
数仓架构通常是一个企业数据分析的起点,在数仓之下会再有一层数据湖,用来做异构数据的存储以及数据的冷备份。但是也有很多企业,特别是几乎完全以结构化数据为主的企业在实施上会把数据湖和企业数仓库合并,基于某个... 企业数据仓库架构必然不等于一个组件,大部分企业在数仓架构实施的都是都是基于现有的部分方案,进行基于自己业务合适的方向进行部分开发与定制,从而达到一个半自研的稳态,既能跟上业务变化的速度,又不过于依赖和受限...
浅谈数仓建设及数据治理 | 社区征文
数据仓库的关键词为面向主题、集成、稳定、反映历史变化、支持管理决策,而这些关键词的实现就体现在分层架构内。一个好的分层架构,有以下好处:1. **清晰数据结构**:每一个数据分层都有对应的作用域,在使用数据... 目标数据的数据来源一般都来自于多张表数据。若出现目标数据异常时,清晰的血缘关系可以快速定位问题所在。而且,血缘管理也是元数据管理重要的一部分。3. **减少重复开发**:数据的逐层加工原则,下层包含了上层数据...
干货|揭秘字节跳动对Apache Doris 数据湖联邦分析的升级和优化
发现数据的商业价值。 在这个时期,主要是将来自业务系统的多种结构化数据聚合到数据仓库中,利用 MPP 等大规模并发技术对企业的数据进行分析,支撑上层的商业分析和决策。## 数据湖阶段数仓的主要特点是只能处理结构化数据。随着数据科学和人工智能的发展,产生了越来越多的非结构化数据,但非结构化数据在数仓中处理中相对麻烦,于是数据湖技术出现了。 数据湖可以被定义为一种存储各类原始数据的存储库,原始数据包含结构化、...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅴ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 **以下为 ByteHouse 技术白皮书【多租户管理、运维监控管理】版块摘...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅲ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群**近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。以下为 ByteHouse 技术白皮书**作业执行流程版块**摘录。技术白皮书(上...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅵ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 **以下为 ByteHouse 技术白皮书【核心技术解析——元数据】版块摘录...
如何快速从 ETL 到 ELT?火山引擎 ByteHouse 做了这三件事
这些数据系统大多采用以行为主的存储结构,比如支付交易记录、用户购买行为、传感器报警等。在数仓及分析领域,海量数据则主要采按列的方式储存。因此,将数据从行级转换成列级存储是建立企业数仓的基础能力。 传统方式是采用 Extract-Transform-Load (ETL)来将业务数据转换为适合数仓的数据模型,然而,这依赖于独立于数仓外的 ETL 系统,因而维护成本较高。但随着云计算时代的到来,云数据仓库具备更强扩展性和计算能力,也要求改...