You need to enable JavaScript to run this app.
最新活动
产品
解决方案
定价
生态与合作
支持与服务
开发者
了解我们

数据仓库元数据模型举例说明-火山引擎

从数据接入、查询分析到可视化展现,提供一站式洞察平台,让数据发挥价值

域名注册服务

com/cn热门域名1元起,实名认证即享
1.00/首年起66.00/首年起
新客专享限购1个

云服务器共享型1核2G

超强性价比,适合个人、测试等场景使用
9.90/101.00/月
新客专享限购1台

CDN国内流量包100G

同时抵扣两种流量消耗,加速分发更实惠
2.00/20.00/年
新客专享限购1个

DigiCert证书免费领取

1年内申请20本免费证书,适用网站测试
0.00/首年0.00/首年
新老同享限领20本

数据仓库元数据模型举例说明-优选内容

数仓进阶篇@记一次BigData-OLAP分析引擎演进思考过程 | 社区征文
数仓多维数据模型详细设计,欢迎一起加入交流探讨,希望能给读者在实际业务场景-OLAP分析演进过程中有些不一样的IDea。 ## 场景目前数据存储的业务类型-**OLTP**,**OLAP......****1、** 其中一种是企业知识库... 兼顾数据仓库,具有实时,批处理,多并发等优点。![image.png](https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/54d03572d84c4a95a31bf3979818d997~tplv-k3u1fbpfcp-5.jpeg?)**Java接入:** ![image.png]...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(上)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** **近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。** 白皮书简述了 ByteHouse 基于 ClickHous... 存储计算分离:解决了全局元数据管理,过多小文件存储性能差等等技术难题。在最小化性能损耗的情况下,实现存储层与计算层的分离,独立扩缩容。- 新一代 MPP 架构:结合 Shared-nothing 的计算层以及 Shared-eve...
ELT in ByteHouse 实践与展望
> 更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群谈到数据仓库, 一定离不开使用Extract-Transform-Load (ETL)或 Extract-Load-Transform (ELT)。 将来源不同、格式各异的数据提取到数据仓库中,并进行处理加工。 传统的数据转换过程一般采用Extract-Transform-Load (ETL)来将业务数据转换为适合数仓的数据模型,然而,这依赖于独立于数仓外的ETL系统,因而维护成本较高。现在,以火山引...
ByConity 技术详解之 ELT
谈到数据仓库, 一定离不开使用Extract-Transform-Load (ETL)或 Extract-Load-Transform (ELT)。 将来源不同、格式各异的数据提取到数据仓库中,并进行处理加工。传统的数据转换过程一般采用Extract-Transform-Load (ETL)来将业务数据转换为适合数仓的数据模型,然而,这依赖于独立于数仓外的ETL系统,因而维护成本较高。ByConity 作为云原生数据仓库,从0.2.0版本开始逐步支持 Extract-Load-Transform (ELT),使用户免于维护多套异构...

数据仓库元数据模型举例说明-相关内容

浅谈数仓建设及数据治理 | 社区征文
血缘管理也是元数据管理重要的一部分。3. **减少重复开发**:数据的逐层加工原则,下层包含了上层数据加工所需要的全量数据,这样的加工方式避免了每个数据开发人员都重新从源系统抽取数据进行加工。4. **数据关系条理化**:源系统间存在复杂的数据关系,比如客户信息同时存在于核心系统、信贷系统、理财系统、资金系统,取数时该如何决策呢?数据仓库会对相同主题的数据进行统一建模,把复杂的数据关系梳理成条理清晰的数据模型,使用...
数仓黄金价值圈: 为什么、是什么、怎么做|社区征文
今天给大家一起分享下有着悠久历史的数据仓库的一些思考由三部分组成为什么,搭建数据仓库是什么,数据仓库定义怎么做,如何搭建数仓# 一:为什么,搭建数据仓库最终目标:**数据驱动资源优化配置,即科学、高效... 同时又承担基础数据记录历史变化,之所以保留原始数据和线上原始数据保持一致,方便后期数据核对需要。- CDM:通用数据模型,又称为数据中间层(Common Data Model),包含DWD、DWS、DIM层。- DWD:数据仓库明细层数...
如何快速从 ETL 到 ELT?火山引擎 ByteHouse 做了这三件事
数据从行级转换成列级存储是建立企业数仓的基础能力。 传统方式是采用 Extract-Transform-Load (ETL)来将业务数据转换为适合数仓的数据模型,然而,这依赖于独立于数仓外的 ETL 系统,因而维护成本较高。但随着云计算时代的到来,云数据仓库具备更强扩展性和计算能力,也要求改变传统的 ELT 流程。 火山引擎 ByteHouse 是一款基于开源 ClickHouse 推出的云原生数据仓库,为用户提供极速分析体验,能够支撑实时数据分析和海...
浅谈大数据建模的主要技术:维度建模 | 社区征文
## 前言我们不管是基于 Hadoop 的数据仓库(如 Hive ),还是基于传统 MPP 架构的数据仓库(如Teradata ),抑或是基于传统 Oracle 、MySQL 、MS SQL Server 关系型数据库的数据仓库,其实都面临如下问题:- 怎么组织数... 很清楚地说明需求方希望对一级类目的销售额进行统计分析,这里的一级类目即为一个维度 。类似的是,“上月”为另一个维度,而销售额明显是事实。### 事实表> **事实表是维度模型中的基本表,或者说核心表**事实上...
ByteHouse技术白皮书正式发布,云数仓核心技术能力首次全面解读
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。 在数字化浪潮下,伴随着公有云的广泛普... 深度剖析 ByteHouse 在企业级数据仓库场景下的业务需求和挑战;在整体架构及核心技术层面,完整呈现 ByteHouse 引擎不同层级及执行流程,详细解析元数据管理、自研表引擎、复杂查询执行模型等 ByteHouse 自研核心技术...
一文读懂火山引擎云数据库产品及选型
虽然这些类型都属于 NoSQL 数据库范畴,但是不同类型的 NoSQL 数据库所适用的场景各有不同,需要根据业务特征选择合适的 NoSQL 数据库。其中 KV 型 NoSQL 数据库适用于需要超高性能,读远多于写,并且可以容忍数据部分丢失的场景,例如作为关系型数据库的外部缓存,用于提升系统整体的读性能,减轻关系型数据库的读压力。文档型 NoSQL 数据库使用的是一种半结构化的数据模型(json 或 xml 格式),与关系型数据库相比,文档型 NoSQL 是没...
干货|揭秘字节跳动对Apache Doris 数据湖联邦分析的升级和优化
其次介绍 Apache Doris 数据湖联邦分析的整体设计和相关特性,最后介绍 Apache Doris 在数据湖联邦分析上的未来规划。# 1. 湖仓一体架构演进回顾湖仓一体的发展史,主要经历了三个阶段。第一个阶段是数据仓库,第... 数据往往由业务系统提供、并发读取和写入,对事务性要求高。由于一部分业务在读取数据,同时另一部分业务在写入数据,需要保证在并发过程中数据的一致性和正确性。 **● 支持数据模型化和治理,** 并在数据湖上建设数...
一键开启云上增长新空间
一键开启云上增长新空间
一键开启云上增长新空间