You need to enable JavaScript to run this app.
最新活动
产品
解决方案
定价
生态与合作
支持与服务
开发者
了解我们

数据仓库概念分层模型

从数据接入、查询分析到可视化展现,提供一站式洞察平台,让数据发挥价值

域名注册服务

cn/com热门域名1元起,实名认证即享
1.00/首年起32.00/首年起
新客专享限购1个
立即购买

云服务器共享型1核2G

超强性价比,适合个人、测试等场景使用
9.90/101.00/月
新客专享限购1台
立即购买

CDN国内流量包100G

同时抵扣两种流量消耗,加速分发更实惠
2.00/20.00/年
新客专享限购1个
立即购买

数据仓库概念分层模型-优选内容

浅谈数仓建设及数据治理 | 社区征文
通过数据分层管理可以简化数据清洗的过程,因为把原来一步的工作分到了多个步骤去完成,相当于把一个复杂的工作拆成了多个简单的工作,把一个大的黑盒变成了一个白盒,每一层的处理逻辑都相对简单和容易理解,这样我们比较容易保证每一个步骤的正确性,当数据发生错误的时候,往往我们只需要局部调整某个步骤即可。数据仓库之父 Bill Inmon对数据仓库做了定义——面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管...
数仓黄金价值圈: 为什么、是什么、怎么做|社区征文
今天给大家一起分享下有着悠久历史的数据仓库的一些思考由三部分组成为什么,搭建数据仓库是什么,数据仓库定义怎么做,如何搭建数仓# 一:为什么,搭建数据仓库最终目标:**数据驱动资源优化配置,即科学、高效... 也是数据仓库的**价值所在**,那如何判断有序是关键,我们可以反过来想,有序的反面是无序,那我们判断无序程度,来反向证明有序度。那如何判断无序程序,不能绕过去的一个概念“熵”,它代表一个系统的混乱程度,熵增越...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(上)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** **近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。** 白皮书简述了 ByteHouse 基于 ClickHous... 数据一致性与事务支持。- 计算资源隔离,读写分离:通过计算组(VW)概念,对宿主机硬件资源进行灵活切割分配,按需扩缩容。资源有效隔离,读写分开资源管理,任务之间互不影响,杜绝了大查询打满所有资源拖垮集群的...
DataLeap数据仓库流程最佳实践
经典数据仓库按照大类分为基础数据层、应用数据层。 本样例中,我们的数据仓库建设思路是: ODS(从生产系统采集原始数据,并将原始数据集成冗余宽表) DWD(对ODS冗余表数据进行轻度过滤处理) DWM (基于DWD表与业务需求,轻度聚合最近三天的数据) APP (基于DWD或DWM,输出具体报表信息) 在“数据地图”中创建数据仓库中要使用到的表:本案例中库信息为:demo_tpc_ds_2022_11_07_59(请结合具体情况修改) 步骤4: 数据仓库分层建表ODS(...

数据仓库概念分层模型-相关内容

DataLeap数据仓库流程最佳实践
轻度聚合最近三天的数据)* APP (基于DWD或DWM,输出具体报表信息)在“数据地图”中创建数据仓库中要使用到的表:![图片](https://portal.volccdn.com/obj/volcfe/cloud-universal-doc/upload_8b22ebbb2507580c0cc1ffaced410541.png)本案例中库信息为:demo_tpc_ds_2022_11_07_59(请结合具体情况修改)## **步骤4:** **数据仓库分层建表**### ODS(数据聚合宽表)```sqlCREATE TABLE demo_tpc_ds_2022_11_07_59.ods_demo_cus...
浅谈大数据建模的主要技术:维度建模 | 社区征文
也为我们后面讲Hadoop 数据仓库实战打下基础。## 维度建模关键概念### 度量和环境维度建模是支持对业务过程的分析,所以它是通过对业务过程度量进行建模来实现的。> **那么,什么是度量呢?**实际上,我们通过... 设备等其他数据相对来说固定且变化不大。> **事实表的一行对应一个度量事件**事实上,每行对应的度量事件可粗可细,比如对某个超市来说,在设计其维度模型时,表示顾客购买事件的事实表的一行即可以记录一张顾客的...
ByConity 技术详解之 ELT
谈到数据仓库, 一定离不开使用Extract-Transform-Load (ETL)或 Extract-Load-Transform (ELT)。 将来源不同、格式各异的数据提取到数据仓库中,并进行处理加工。传统的数据转换过程一般采用Extract-Transform-Load (ETL)来将业务数据转换为适合数仓的数据模型,然而,这依赖于独立于数仓外的ETL系统,因而维护成本较高。ByConity 作为云原生数据仓库,从0.2.0版本开始逐步支持 Extract-Load-Transform (ELT),使用户免于维护多套异构...
数仓进阶篇@记一次BigData-OLAP分析引擎演进思考过程 | 社区征文
这些概念越来越火热,前些时候大部分工作集中在信创自主可控,现阶段已告一段落。信息化,数字化建设也是不可或缺的一环,遇到挑战,勇于迎对,不断的攻克技术难关是技术人的一种追求!数仓多维数据模型详细设计,欢迎一起... 兼顾数据仓库,具有实时,批处理,多并发等优点。![image.png](https://p1-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/54d03572d84c4a95a31bf3979818d997~tplv-k3u1fbpfcp-5.jpeg?)**Java接入:** ![image.png]...
ByteHouse技术白皮书正式发布,云数仓核心技术能力首次全面解读
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。 在数字化浪潮下,伴随着公有云的广泛普... 深度剖析 ByteHouse 在企业级数据仓库场景下的业务需求和挑战;在整体架构及核心技术层面,完整呈现 ByteHouse 引擎不同层级及执行流程,详细解析元数据管理、自研表引擎、复杂查询执行模型等 ByteHouse 自研核心技术...
ByteHouse:基于ClickHouse的实时数仓能力升级解读
ByteHouse是火山引擎上的一款云原生数据仓库,为用户带来极速分析体验,能够支撑实时数据分析和海量数据离线分析。便捷的弹性扩缩容能力,极致分析性能和丰富的企业级特性,助力客户数字化转型。全篇将从两个版块讲解... 各种各样的数据源都可以通过Kafka或者Flink写入到ByteHouse里面,然后来对接上层的应用。按照数仓分层角度,Kafka、Flink可以理解为ODS层,那ByteHouse就可以理解为DWD和DWS层。如果说有聚合或者预计算的场景,也可以...
干货 | 看 SparkSQL 如何支撑企业级数仓
本文作者:惊帆 来自于数据平台 EMR 团队# 前言Apache Hive 经过多年的发展,目前基本已经成了业界构建超大规模数据仓库的事实标准和数据处理工具,Hive 已经不单单是一个技术组件,而是一种设计理念。Hive 有 JDB... 数仓在构建的时候通常需要 ETL 处理和分层设计,基于业务系统采集的结构化和非结构化数据进行各种 ETL 处理成为 DWD 层,再基于 DWD 层设计上层的数据模型层,形成 DM,中间会有 DWB/DWS 作为部分中间过程数据。从技...

体验中心

通用文字识别

OCR
对图片中的文字进行检测和识别,支持汉语、英语等语种
体验demo

白皮书

数据智能知识图谱
火山引擎数智化平台基于字节跳动数据平台,历时9年,基于多元、丰富场景下的数智实战经验打造而成
立即获取

最新活动

火山引擎·增长动力

助力企业快速增长
了解详情

数据智能VeDI

易用的高性能大数据产品家族
了解详情

新用户特惠专场

云服务器9.9元限量秒杀
查看活动

一键开启云上增长新空间

立即咨询