You need to enable JavaScript to run this app.
最新活动
产品
解决方案
定价
生态与合作
支持与服务
开发者
了解我们

数据仓库的多维数据模型有

从数据接入、查询分析到可视化展现,提供一站式洞察平台,让数据发挥价值

社区干货

数仓进阶篇@记一次BigData-OLAP分析引擎演进思考过程 | 社区征文

数仓多维数据模型详细设计,欢迎一起加入交流探讨,希望能给读者在实际业务场景-OLAP分析演进过程中有些不一样的IDea。 ## 场景目前数据存储的业务类型-**OLTP**,**OLAP......****1、** 其中一种是企业知识库,权限系统,数据由本系统产生,数据量不是很大,但是数据增删改较多; **2、** 另一种是统计分析类型,数据不由本系统产生,来自医院各生产系统,数据集规模极其庞大,并且数据查询较多。## 思考数据每天在源源不断...

ELT in ByteHouse 实践与展望

> 更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群谈到数据仓库, 一定离不开使用Extract-Transform-Load (ETL)或 Extract-Load-Transform (ELT)。 将来源不同、格式各异的数据提取到数据仓库中,并进行处理加工。 传统的数据转换过程一般采用Extract-Transform-Load (ETL)来将业务数据转换为适合数仓的数据模型,然而,这依赖于独立于数仓外的ETL系统,因而维护成本较高。现在,以火山引...

ELT in ByteHouse 实践与展望

谈到数据仓库, 一定离不开使用 Extract-Transform-Load (ETL)或 Extract-Load-Transform (ELT)。将来源不同、格式各异的数据提取到数据仓库中,并进行处理加工。传统的数据转换过程一般采用 Extract-Transform-Load (ETL)来将业务数据转换为适合数仓的数据模型,然而,这依赖于独立于数仓外的 ETL 系统,因而维护成本较高。现在,以火山引擎 ByteHouse 为例的云原生数据仓库,凭借其强大的计算能力、可扩展性,开始全面支持Extrac...

火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(上)

> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** **近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。** 白皮书简述了 ByteHouse 基于 ClickHous... 多租户管理:支持多租户模型,租户间互相隔离,独立计费。- RBAC 权限管理:支持库、表、列级,读、写、资源管理等权限。通过角色进行管理。- VW 自动启停,弹性扩展:计算资源按需分配,闲时关闭。降低总成本,提...

特惠活动

域名注册服务

cn/top/com等热门域名,首年低至1元,邮箱建站必选
1.00/首年起32.00/首年起
立即购买

2核4G热门爆款云服务器

100%性能独享不限流量,学习测试、web前端、企业应用首选,每日花费低至0.24元
89.00/2380.22/年
立即抢购

DCDN国内流量包100G

同时抵扣CDN与DCDN两种流量消耗,加速分发更实惠
2.00/20.00/年
立即购买

数据仓库的多维数据模型有-优选内容

数仓进阶篇@记一次BigData-OLAP分析引擎演进思考过程 | 社区征文
数仓多维数据模型详细设计,欢迎一起加入交流探讨,希望能给读者在实际业务场景-OLAP分析演进过程中有些不一样的IDea。 ## 场景目前数据存储的业务类型-**OLTP**,**OLAP......****1、** 其中一种是企业知识库,权限系统,数据由本系统产生,数据量不是很大,但是数据增删改较多; **2、** 另一种是统计分析类型,数据不由本系统产生,来自医院各生产系统,数据集规模极其庞大,并且数据查询较多。## 思考数据每天在源源不断...
ELT in ByteHouse 实践与展望
> 更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群谈到数据仓库, 一定离不开使用Extract-Transform-Load (ETL)或 Extract-Load-Transform (ELT)。 将来源不同、格式各异的数据提取到数据仓库中,并进行处理加工。 传统的数据转换过程一般采用Extract-Transform-Load (ETL)来将业务数据转换为适合数仓的数据模型,然而,这依赖于独立于数仓外的ETL系统,因而维护成本较高。现在,以火山引...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(上)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** **近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。** 白皮书简述了 ByteHouse 基于 ClickHous... 多租户管理:支持多租户模型,租户间互相隔离,独立计费。- RBAC 权限管理:支持库、表、列级,读、写、资源管理等权限。通过角色进行管理。- VW 自动启停,弹性扩展:计算资源按需分配,闲时关闭。降低总成本,提...
浅谈大数据建模的主要技术:维度建模 | 社区征文
由于一个企业的业务过程数据构成了其所有数据的绝大部分,因此事实表也通常占用了数据仓库存储的绝大部分。比如对于某个超市来说,其 **销售的明细数据** 通常占其拥有数据的绝大部分且每天还在不断地累计和增长,而商品、门店、员工、设备等其他数据相对来说固定且变化不大。> **事实表的一行对应一个度量事件**事实上,每行对应的度量事件可粗可细,比如对某个超市来说,在设计其维度模型时,表示顾客购买事件的事实表的一行即可...

数据仓库的多维数据模型有-相关内容

浅谈数仓建设及数据治理 | 社区征文

**数据关系条理化**:源系统间存在复杂的数据关系,比如客户信息同时存在于核心系统、信贷系统、理财系统、资金系统,取数时该如何决策呢?数据仓库会对相同主题的数据进行统一建模,把复杂的数据关系梳理成条理清晰的数据模型,使用时就可避免上述问题了。5. **屏蔽原始数据的影响**:数据的逐层加工原则,上层的数据都由下一层的数据加工获取,不允许跳级取数。而原始数据位于数仓的最底层,离应用层数据还有多层的数据加工,所以加工应...

观点 | 数据分析引擎百花齐放,为什么要大力投入ClickHouse?

随着云计算等技术发展以及海量数据应用场景等出现,对数据仓库提出全新要求,高性能、实时性、云原生等成为数据仓库发展关键词,也因此演变出不同的数仓发展路径。> > > > > **在字节跳动十年发展历程中,各类业务... 需要提前定义数据模型和无法进行交互式分析等问题,随着数据量变大反而会导致返回结果慢。随后团队又希望用Spark来解决问题。但Spark同样存在不少问题困扰着团队,比如查询速度不够快、资源使用率高、稳定性不够好,以...

干货 | ELT in ByteHouse 实践与展望

谈到数据仓库, 一定离不开使用 **Extract-Transform-Load (ETL)**或 **Extract-Load-Transform (ELT)**。将来源不同、格式各异的数据提取到数据仓库中,并进行处理加工。 传统的数据转换过程一般采用 **Extract-Transform-Load (ETL)** 来将业务数据转换为适合数仓的数据模型,然而,这依赖于独立于数仓外的 ETL 系统,因而维护成本较高。 现在,**以火山引擎 ByteHouse 为例的云原生数据仓库,**凭借...

域名注册服务

cn/top/com等热门域名,首年低至1元,邮箱建站必选
1.00/首年起32.00/首年起
立即购买

2核4G热门爆款云服务器

100%性能独享不限流量,学习测试、web前端、企业应用首选,每日花费低至0.24元
89.00/2380.22/年
立即抢购

DCDN国内流量包100G

同时抵扣CDN与DCDN两种流量消耗,加速分发更实惠
2.00/20.00/年
立即购买

干货 | 看 SparkSQL 如何支撑企业级数仓

本文作者:惊帆 来自于数据平台 EMR 团队# 前言Apache Hive 经过多年的发展,目前基本已经成了业界构建超大规模数据仓库的事实标准和数据处理工具,Hive 已经不单单是一个技术组件,而是一种设计理念。Hive 有 JDB... 基于业务系统采集的结构化和非结构化数据进行各种 ETL 处理成为 DWD 层,再基于 DWD 层设计上层的数据模型层,形成 DM,中间会有 DWB/DWS 作为部分中间过程数据。从技术选型来说,从数据源的 ETL 到数据模型的构建通...

应用场景

支持EB级别的数据仓库、湖内建仓、湖仓一体等。配合火山引擎大数据研发治理套件DataLeap和全域数据集成DataSail等产品,可实现一站式数据集成研发治理方案。 实时数仓 实时数仓对数据实时性,data serving,并发等都有较高的要求,离线分析系统无法满足该类需求。实时数仓场景具备如下特点: 支持流式入仓,数据秒级可见; 支持高并发数据服务,支持万级QPS; 秒级或亚秒级数据查询性能; 支持实时指标聚合,支持多维分析。 企业可基于EMR ...

干货 | 这样做,能快速构建企业级数据湖仓

Native 化有两个典型的代表。* Spark:去年官宣的 Photon 项目,宣称在 tpcs 测试集上达到 2X 加速效果。* Presto:Velox native 引擎。Velox 引擎现在不太成熟,但是根据 Presto 社区官方说法,可以实现原来 1/3 的成本。由此可猜测,等价情况下能获得 3X 性能提升。除了以上两者,近几年热门的 ClickHouse 和 Doris 也是 Native 化的表现。### **第二,向量化。**Codegen 和向量化都是从数据仓库,而不是 Hadoop 体系的产...

以 100GB SSB 性能测试为例,通过 ByteHouse 云数仓开启你的数据分析之路

通过分析海量数据,加速数据洞察。ByteHouse 的架构总览如下。![picture.image](https://p6-volc-community-sign.byteimg.com/tos-cn-i-tlddhu82om/f07eddc2aa9b47289d7cd066f12c5497~tplv-tlddhu82om-image.image?=&rk3s=8031ce6d&x-expires=1709655667&x-signature=SsDwZ6vQB%2BNhcdWvrSPTQizQLwg%3D)### SSB 基准测试SSB(Star Schema Benchmark)是由麻省州立大学波士顿校区的研究员定义的基于现实商业应用的数据模型。S...

干货|ByteHouse:百万级TPS!看字节跳动如何基于ClickHouse落地高性能实时数仓

数据仓库,为用户带来极速分析体验,能够支撑实时数据分析和海量数据离线分析。便捷的弹性扩缩容能力,极致分析性能和丰富的企业级特性,助力客户数字化转型。> > > > > **全篇将从两个版块讲解 ByteHouse 的技术... ByteHouse可以提供数据集至BI看板,满足运营更精细化的需求。达到及时的观察线上指标,验证特殊场景的效果。除了实时性之外,ByteHouse也提供了灵活的多维分析和监控的能力。 ![picture.image](https...

干货|十分钟读懂字节跳动的Doris湖仓分析实践

多维分析,数据报表,用户画像分析等场景。自带分析引擎和存储引擎,支持向量化执行引擎,不依赖其他组件,兼容MySQL协议。Apache Doris具备以下几个特点:- **良好的架构设计,** 支持高并发低延时的查询服务,支持高吞吐量的交互式分析。多FE均可对外提供服务,并发增加时,线性扩充FE和BE即可支持高并发的查询请求。 - **支持批量数据load和流式数据load,** 支持数据更新。支持Update/Delete语法,unique/aggregate数据模型,支持动...

特惠活动

域名注册服务

cn/top/com等热门域名,首年低至1元,邮箱建站必选
1.00/首年起32.00/首年起
立即购买

2核4G热门爆款云服务器

100%性能独享不限流量,学习测试、web前端、企业应用首选,每日花费低至0.24元
89.00/2380.22/年
立即抢购

DCDN国内流量包100G

同时抵扣CDN与DCDN两种流量消耗,加速分发更实惠
2.00/20.00/年
立即购买

产品体验

体验中心

幻兽帕鲁服务器搭建

云服务器
快速搭建幻兽帕鲁高性能服务器,拒绝卡顿,即可畅玩!
即刻畅玩

白皮书

数据智能知识图谱
火山引擎数智化平台基于字节跳动数据平台,历时9年,基于多元、丰富场景下的数智实战经验打造而成
立即获取

最新活动

热门联机游戏服务器

低至22元/月,畅玩幻兽帕鲁和雾锁王国
立即部署

火山引擎·增长动力

助力企业快速增长
了解详情

数据智能VeDI

易用的高性能大数据产品家族
了解详情

一键开启云上增长新空间

立即咨询