大数据数据仓库分层架构-优选内容
浅谈数仓建设及数据治理 | 社区征文
把一个大的黑盒变成了一个白盒,每一层的处理逻辑都相对简单和容易理解,这样我们比较容易保证每一个步骤的正确性,当数据发生错误的时候,往往我们只需要局部调整某个步骤即可。数据仓库之父 Bill Inmon对数据仓库做了定义——面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。从定义上来看,数据仓库的关键词为面向主题、集成、稳定、反映历史变化、支持管理决策,而这些关键词的实现就体现在分层架构内...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(中)
云原生数据仓库 ByteHouse 总体架构图如上图所示,设计目标是实现高扩展性、高性能、高可靠性、高易用性。从下往上,总体上分服务层、计算层和存储层。## 服务层服务层包括了所有与用户交互的内容,包括用户管理、... 用来存储实际数据、索引等内容。 数据表的数据文件存储在远端的统一分布式存储系统中,与计算节点分离开来。底层存储系统可能会对应不同类型的分布式系统。例如 HDFS,Amazon S3, Google cloud storage,Azure ...
DataLeap数据仓库流程最佳实践
经典数据仓库按照大类分为基础数据层、应用数据层。 本样例中,我们的数据仓库建设思路是: ODS(从生产系统采集原始数据,并将原始数据集成冗余宽表) DWD(对ODS冗余表数据进行轻度过滤处理) DWM (基于DWD表与业务需求,轻度聚合最近三天的数据) APP (基于DWD或DWM,输出具体报表信息) 在“数据地图”中创建数据仓库中要使用到的表:本案例中库信息为:demo_tpc_ds_2022_11_07_59(请结合具体情况修改) 步骤4: 数据仓库分层建表 ODS...
浅谈大数据建模的主要技术:维度建模 | 社区征文
## 前言我们不管是基于 Hadoop 的数据仓库(如 Hive ),还是基于传统 MPP 架构的数据仓库(如Teradata ),抑或是基于传统 Oracle 、MySQL 、MS SQL Server 关系型数据库的数据仓库,其实都面临如下问题:- 怎么组织数... 维度建模认为事实表应该包含最底层的、最原子性的细节,因为这样会带来最大的灵活性 维度建模中,细节的级别称为事实表的粒度,比如上文顾客购买行为事实表的粒度就应该是小票子项,而非小票。> **事实表中最常用的度...
大数据数据仓库分层架构-相关内容
干货 | 看 SparkSQL 如何支撑企业级数仓
基于如上的分层设计的架构图可以发现,虽然目前有非常多的组件,像 Presto,Doris,ClickHouse,Hive 等等,但是这些组件各自工作在不同的场景下,像数仓构建和交互式分析就是两个典型的场景。交互式分析强调的是时效性,一个查询可以快速出结果,像 Presto,Doris,ClickHouse 虽然也可以处理海量数据,甚至达到 PB 及以上,但是主要还是是用在交互式分析上,也就是基于数据仓库的 DM 层,给用户提供基于业务的交互式分析查询,方便用户快速进...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(上)
为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 以下为 ByteHouse 技术白皮书前两个版块摘录。# 1.ByteHouse 简介ByteHouse 是字节跳动自主研发的云原生数据仓库产品,在开源 ClickHouse 引擎之上做了技术架构重构,实现了云原生环境的部署和运维管理、存储计算分离、多租户管理等功能。在可扩展性、稳定性、可运维性、性能以及资源利用率方面都有巨大的提升。 截至 2022 年 2 月,ByteHous...
应用场景
应用场景 1.云原生数据湖仓 数据湖仓是一种结合了数据湖和数据仓库的新型数据架构,实现了更加灵活、高效和可扩展的数据管理,能够协助企业更好的理解和使用数据资产,提升业务价值。以互联网行业为例,企业需要搭建数据分析平台,聚合APP和日志数据分析客户行为支持精准营销,辅助分析决策。但自建开源大数据平台时,往往面临管理维护人力投入大,资源成本高且不灵活等问题。 火山引擎EMR提供丰富的主流开源大数据组件,100%开源兼容,支...
数仓进阶篇@记一次BigData-OLAP分析引擎演进思考过程 | 社区征文
数据存储横向水平扩展,存储服务增加/删除,但若所有节点参与运算,水平扩展到一定程度硬件必然很难hold,很容易出现短板,并且容量也有明显天花板,可结合批处理与MPP架构; **4、** 大数据给传统的关系型数据库-D... 兼顾数据仓库,具有实时,批处理,多并发等优点。**Java接入:** ![image.png]...
数仓黄金价值圈: 为什么、是什么、怎么做|社区征文
产生耗散结构的系统必须处于远离平衡的状态以上特点也是数据仓库的特点,所以好的数据仓库一定是耗散结构的**多层次,开放,一直被构建ing**# 三、怎么做,如何搭建数仓## 建设思路如何搭建数仓,在业界一直存在着两种思路### 从顶到下从顶到下,即从点到面,到面面俱到### 从低到上从低到上,即面面俱到,到各个击破### 数仓分层不管是哪一种,都逃脱不了以下的常用分层架构- ODS:操作型数据(Operational Data ...
干货|揭秘字节跳动对Apache Doris 数据湖联邦分析的升级和优化
首先介绍数据湖相关技术的演进,其次介绍 Apache Doris 数据湖联邦分析的整体设计和相关特性,最后介绍 Apache Doris 在数据湖联邦分析上的未来规划。# 1. 湖仓一体架构演进回顾湖仓一体的发展史,主要经历了三个阶段。第一个阶段是数据仓库,第二个阶段是数据湖,第三个阶段是湖仓一体。## 数据仓库阶段数据仓库是在上个世纪80年代兴起的一项技术。随着企业业务发展和大规模计算技术的发展,越来越多的企业使用数据仓库来处理...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅵ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 **以下为 ByteHouse 技术白皮书【核心技术解析——元数据】版块摘录...