You need to enable JavaScript to run this app.
最新活动
产品
解决方案
定价
生态与合作
支持与服务
开发者
了解我们

集团数据仓库设计图-火山引擎

从数据接入、查询分析到可视化展现,提供一站式洞察平台,让数据发挥价值

域名注册服务

com/cn热门域名1元起,实名认证即享
1.00/首年起66.00/首年起
新客专享限购1个

云服务器共享型1核2G

超强性价比,适合个人、测试等场景使用
9.90/101.00/月
新客专享限购1台

CDN国内流量包100G

同时抵扣两种流量消耗,加速分发更实惠
2.00/20.00/年
新客专享限购1个

DigiCert证书免费领取

1年内申请20本免费证书,适用网站测试
0.00/首年0.00/首年
新老同享限领20本

集团数据仓库设计图-优选内容

火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(中)
云原生数据仓库 ByteHouse 总体架构图如上图所示,设计目标是实现高扩展性、高性能、高可靠性、高易用性。从下往上,总体上分服务层、计算层和存储层。## 服务层服务层包括了所有与用户交互的内容,包括用户管理、身份验证、查询优化器,事务管理、安全管理、元数据管理,以及运维监控、数据查询等可视化操作功能。 **服务层主要包括如下组件:**- **资源管理器**资源管理器(Resource Manager)负责对计算资源进行统一的...
DataLeap数据仓库流程最佳实践
# 前言本实验以DataLeap on LAS为例,实际操作火山引擎数据产品,完成数据仓库的构建。# 关于实验* 预计部署时间:50分钟* 级别:初级* 相关产品:大数据开发套件、湖仓一体分析服务LAS* 受众: 通用## 环境说明1. 已购买DataLeap产品2. 已创建湖仓一体LAS队列3. 子账户具备DataLeap相关权限(参考:https://www.volcengine.com/docs/6260/65408)# 实验说明## **步骤1:创建项目**![图片](https://portal.volccdn.com...
干货 | 看 SparkSQL 如何支撑企业级数仓
本文作者:惊帆 来自于数据平台 EMR 团队# 前言Apache Hive 经过多年的发展,目前基本已经成了业界构建超大规模数据仓库的事实标准和数据处理工具,Hive 已经不单单是一个技术组件,而是一种设计理念。Hive 有 JDB... 一个企业数仓的整体逻辑如上图所示,数仓在构建的时候通常需要 ETL 处理和分层设计,基于业务系统采集的结构化和非结构化数据进行各种 ETL 处理成为 DWD 层,再基于 DWD 层设计上层的数据模型层,形成 DM,中间会有 DWB...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅳ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群**近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。以下为 ByteHouse 技术白皮书【数据导入导出】版块摘录。技术白皮书(Ⅰ)(Ⅱ...

集团数据仓库设计图-相关内容

火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅴ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 **以下为 ByteHouse 技术白皮书【多租户管理、运维监控管理】版块摘...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅲ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群**近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。以下为 ByteHouse 技术白皮书**作业执行流程版块**摘录。技术白皮书(上...
DataLeap数据仓库流程最佳实践
经典数据仓库按照大类分为基础数据层、应用数据层。 本样例中,我们的数据仓库建设思路是: ODS(从生产系统采集原始数据,并将原始数据集成冗余宽表) DWD(对ODS冗余表数据进行轻度过滤处理) DWM (基于DWD表与业务需求,轻度聚合最近三天的数据) APP (基于DWD或DWM,输出具体报表信息) 在“数据地图”中创建数据仓库中要使用到的表:本案例中库信息为:demo_tpc_ds_2022_11_07_59(请结合具体情况修改) 步骤4: 数据仓库分层建表 ODS...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅵ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 **以下为 ByteHouse 技术白皮书【核心技术解析——元数据】版块摘录...
基于火山引擎 EMR 构建企业级数据湖仓
使用体验离预期有差距:由于 Table Format 设计上的原因,流式写入的效率不高,写入越频繁小文件问题就越严重; - 有一定的维护成本:使用 Table Format 的用户需要自己维护,会给用户造成一定的负担; - 与现有生... 都是从数据仓库而不是 Hadoop 体系的产品中长出来的:Codegen 是 Hyper 提出的技术,而向量化则是 MonetDB 提出的,所以计算引擎的精细化也是沿着数仓开辟的路子在走。Spark 等 Hadoop 体系均走了 Codegen 的道路,因为...
浅谈大数据建模的主要技术:维度建模 | 社区征文
维度表设计和事实表设计等各个方面,也为我们后面讲Hadoop 数据仓库实战打下基础。## 维度建模关键概念### 度量和环境维度建模是支持对业务过程的分析,所以它是通过对业务过程度量进行建模来实现的。> **那么,什么是度量呢?**实际上,我们通过和业务方、需求方交谈,或者阅读报表、图表等,可以很容易地识别度量。考虑如下业务需求:- 店铺上个月的销售额如何?- 店铺库存趋势如何?- 店铺的访问情况如何( pv,uv) ? - 店...
ELT in ByteHouse 实践与展望
> 更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群谈到数据仓库, 一定离不开使用Extract-Transform-Load (ETL)或 Extract-Load-Transform (ELT)。 将来源不同、格式各异的数... 我们可以搜到ByteHouse产品(如下图):![picture.image](https://p6-volc-community-sign.byteimg.com/tos-cn-i-tlddhu82om/9c267e82685f4fb8a5024fcc8555eb71~tplv-tlddhu82om-image.image?=&x-expires=16956588...
一键开启云上增长新空间
一键开启云上增长新空间
一键开启云上增长新空间