You need to enable JavaScript to run this app.
最新活动
产品
解决方案
定价
生态与合作
支持与服务
开发者
了解我们

数据仓库的多维数据模型设计

从数据接入、查询分析到可视化展现,提供一站式洞察平台,让数据发挥价值

社区干货

浅谈大数据建模的主要技术:维度建模 | 社区征文

怎么组织数据仓库中的数据?- 怎么组织才能使得数据的使用最为方便和便捷?- 怎么组织才能使得数据仓库具有良好的可扩展性和可维护性?> **Ralph Kimball 维度建模理论很好地回答和解决了上述问题。**维度建模理论和技术也是目前在数据仓库领域中使用最为广泛的、也最得到认可和接纳的一项技术。今天我们就来深入探讨 Ralph Kimball 维度建模的各项技术,涵盖其基本理论、一般过程、维度表设计和事实表设计等各个方面,也为我...

数仓进阶篇@记一次BigData-OLAP分析引擎演进思考过程 | 社区征文

数仓多维数据模型详细设计,欢迎一起加入交流探讨,希望能给读者在实际业务场景-OLAP分析演进过程中有些不一样的IDea。 ## 场景目前数据存储的业务类型-**OLTP**,**OLAP......****1、** 其中一种是企业知识库,权限系统,数据由本系统产生,数据量不是很大,但是数据增删改较多; **2、** 另一种是统计分析类型,数据不由本系统产生,来自医院各生产系统,数据集规模极其庞大,并且数据查询较多。## 思考数据每天在源源不断...

ELT in ByteHouse 实践与展望

> 更多技术交流、求职机会,欢迎关注字节跳动数据平台微信公众号,回复【1】进入官方交流群谈到数据仓库, 一定离不开使用Extract-Transform-Load (ETL)或 Extract-Load-Transform (ELT)。 将来源不同、格式各异的数据提取到数据仓库中,并进行处理加工。 传统的数据转换过程一般采用Extract-Transform-Load (ETL)来将业务数据转换为适合数仓的数据模型,然而,这依赖于独立于数仓外的ETL系统,因而维护成本较高。现在,以火山引...

火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(上)

《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。** 白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化... 多租户管理:支持多租户模型,租户间互相隔离,独立计费。- RBAC 权限管理:支持库、表、列级,读、写、资源管理等权限。通过角色进行管理。- VW 自动启停,弹性扩展:计算资源按需分配,闲时关闭。降低总成本,提...

特惠活动

域名注册服务

cn/top/com等热门域名,首年低至1元,邮箱建站必选
1.00/首年起32.00/首年起
立即购买

幻兽帕鲁游戏服务器4C16G3M

10人畅玩不卡顿,100%性能独享,每天只需0.7元
22.00/558.86/月
立即购买

DCDN国内流量包100G

同时抵扣CDN与DCDN两种流量消耗,加速分发更实惠
2.00/20.00/年
立即购买

数据仓库的多维数据模型设计-优选内容

浅谈大数据建模的主要技术:维度建模 | 社区征文
怎么组织数据仓库中的数据?- 怎么组织才能使得数据的使用最为方便和便捷?- 怎么组织才能使得数据仓库具有良好的可扩展性和可维护性?> **Ralph Kimball 维度建模理论很好地回答和解决了上述问题。**维度建模理论和技术也是目前在数据仓库领域中使用最为广泛的、也最得到认可和接纳的一项技术。今天我们就来深入探讨 Ralph Kimball 维度建模的各项技术,涵盖其基本理论、一般过程、维度表设计和事实表设计等各个方面,也为我...
数仓进阶篇@记一次BigData-OLAP分析引擎演进思考过程 | 社区征文
数仓多维数据模型详细设计,欢迎一起加入交流探讨,希望能给读者在实际业务场景-OLAP分析演进过程中有些不一样的IDea。 ## 场景目前数据存储的业务类型-**OLTP**,**OLAP......****1、** 其中一种是企业知识库,权限系统,数据由本系统产生,数据量不是很大,但是数据增删改较多; **2、** 另一种是统计分析类型,数据不由本系统产生,来自医院各生产系统,数据集规模极其庞大,并且数据查询较多。## 思考数据每天在源源不断...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(上)
《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。** 白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化... 多租户管理:支持多租户模型,租户间互相隔离,独立计费。- RBAC 权限管理:支持库、表、列级,读、写、资源管理等权限。通过角色进行管理。- VW 自动启停,弹性扩展:计算资源按需分配,闲时关闭。降低总成本,提...
浅谈数仓建设及数据治理 | 社区征文
数据仓库的模型设计中,一般采用第三范式。一个符合第三范式的关系必须具有以下三个条件 :- 每个属性值唯一,不具有多义性 ;- 每个非主属性必须完全依赖于整个主键,而非主键的一部分 ;- 每个非主属性不能依赖于其他关系中的属性,因为这样的话,这种属性应该归到其他关系中去。![范式建模](https://cdn.jsdelivr.net/gh/sunmyuan/cdn/210316_3.png)根据 Inmon 的观点,数据仓库模型的建设方法和业务系统的企业数据模型类似...

数据仓库的多维数据模型设计-相关内容

观点|SparkSQL在企业级数仓建设的优势

数据仓库的事实标准和数据处理工具,Hive已经不单单是一个技术组件,而是一种设计理念。Hive有JDBC客户端,支持标准JDBC接口访问的HiveServer2服务器,管理元数据服务的Hive Metastore,以及任务以MapReduce分布式... 数仓在构建的时候通常需要ETL处理和分层设计,基于业务系统采集的结构化和非结构化数据进行各种ETL处理成为DWD层,再基于DWD层设计上层的数据模型层,形成DM,中间会有DWB/DWS作为部分中间过程数据。从技术选型来...

ByteHouse技术白皮书正式发布,云数仓核心技术能力首次全面解读

基于云原生架构的数据仓库百花齐放,快速迭代。相比起传统数仓,云原生数据仓库凭借更灵活、更具弹性化的特性,以及有效降低资源、人力成本的能力,在云市场上受到越来越多的关注,逐渐成为企业数字化基础设施中的关键“底座”。 《火山引擎云原生数据仓库 ByteHouse 技术白皮书》简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型...

应用场景

云原生数据湖仓 数据湖仓是一种结合了数据湖和数据仓库的新型数据架构,实现了更加灵活、高效和可扩展的数据管理,能够协助企业更好的理解和使用数据资产,提升业务价值。以互联网行业为例,企业需要搭建数据分析平台,... 数据秒级可见; 支持高并发数据服务,支持万级QPS; 秒级或亚秒级数据查询性能; 支持实时指标聚合,支持多维分析。 企业可基于EMR Doris/StarRocks构建实时数仓。数据入仓后,经过流式计算,明细数据进入Doris/StarRocks...

域名注册服务

cn/top/com等热门域名,首年低至1元,邮箱建站必选
1.00/首年起32.00/首年起
立即购买

幻兽帕鲁游戏服务器4C16G3M

10人畅玩不卡顿,100%性能独享,每天只需0.7元
22.00/558.86/月
立即购买

DCDN国内流量包100G

同时抵扣CDN与DCDN两种流量消耗,加速分发更实惠
2.00/20.00/年
立即购买

如何快速从 ETL 到 ELT?火山引擎 ByteHouse 做了这三件事

来将业务数据转换为适合数仓的数据模型,然而,这依赖于独立于数仓外的 ETL 系统,因而维护成本较高。但随着云计算时代的到来,云数据仓库具备更强扩展性和计算能力,也要求改变传统的 ELT 流程。 火山引擎 ByteH... 能够支撑实时数据分析和海量数据离线分析,同时还具备便捷的弹性扩缩容能力,极致分析性能和丰富的企业级特性。凭借其强大的计算能力,可以全面支持 Extract-Load-Transform (ELT)的能力,从而使用户免于维护多套异构系...

干货 | 看 SparkSQL 如何支撑企业级数仓

本文作者:惊帆 来自于数据平台 EMR 团队# 前言Apache Hive 经过多年的发展,目前基本已经成了业界构建超大规模数据仓库的事实标准和数据处理工具,Hive 已经不单单是一个技术组件,而是一种设计理念。Hive 有 JDB... 数仓在构建的时候通常需要 ETL 处理和分层设计,基于业务系统采集的结构化和非结构化数据进行各种 ETL 处理成为 DWD 层,再基于 DWD 层设计上层的数据模型层,形成 DM,中间会有 DWB/DWS 作为部分中间过程数据。从技...

干货|十分钟读懂字节跳动的Doris湖仓分析实践

多维分析,数据报表,用户画像分析等场景。自带分析引擎和存储引擎,支持向量化执行引擎,不依赖其他组件,兼容MySQL协议。Apache Doris具备以下几个特点:- **良好的架构设计,** 支持高并发低延时的查询服务,支持高吞吐量的交互式分析。多FE均可对外提供服务,并发增加时,线性扩充FE和BE即可支持高并发的查询请求。 - **支持批量数据load和流式数据load,** 支持数据更新。支持Update/Delete语法,unique/aggregate数据模型,支持动...

ByteHouse:基于ClickHouse的实时数仓能力升级解读

ByteHouse是火山引擎上的一款云原生数据仓库,为用户带来极速分析体验,能够支撑实时数据分析和海量数据离线分析。便捷的弹性扩缩容能力,极致分析性能和丰富的企业级特性,助力客户数字化转型。全篇将从两个版块讲解... ByteHouse可以提供数据集至BI看板,满足运营更精细化的需求。达到及时的观察线上指标,验证特殊场景的效果。除了实时性之外,ByteHouse也提供了灵活的多维分析和监控的能力。 # 金融行业实时数仓建设思路本版...

干货 | 这样做,能快速构建企业级数据湖仓

Codegen 和向量化都是从数据仓库,而不是 Hadoop 体系的产品中衍生出来。Codegen 是 Hyper 提出的技术,而向量化则是 MonetDB 提出的,所以计算引擎的精细化也是沿着数仓开辟的路子在走。Spark 等 Hadoop 体系均走了 Codegen 的道路,因为 Java 做 Codegen 比做向量化要更容易一些。但现在,向量化是一个更好的选择,因为向量化可以一次处理一批数据,而不只是一条数据。其好处是可以充分利用 CPU 的特性,如 SIMD,Pipeline 执行等...

基于 ByteHouse 构建实时数仓实践

整体架构采用多主对等架构设计,架构安全可靠稳定,可确保单点无故障瓶颈。 ByteHouse 的架构简洁,采用了全面向量化引擎,并配备全新设计的优化器,查询速度有数量级提升(尤其是多表关联查询)。 用户使用 ByteHouse 可以灵活构建包括大宽表、星型模型、雪花模型在内的各类模型。 ByteHouse 可以满足企业级用户的多种分析需求,包括 OLAP 多维分析、定制报表、实时数据分析和 Ad-hoc 数据分析等各种应用场景。 ...

特惠活动

域名注册服务

cn/top/com等热门域名,首年低至1元,邮箱建站必选
1.00/首年起32.00/首年起
立即购买

幻兽帕鲁游戏服务器4C16G3M

10人畅玩不卡顿,100%性能独享,每天只需0.7元
22.00/558.86/月
立即购买

DCDN国内流量包100G

同时抵扣CDN与DCDN两种流量消耗,加速分发更实惠
2.00/20.00/年
立即购买

产品体验

体验中心

幻兽帕鲁服务器搭建

云服务器
快速搭建幻兽帕鲁高性能服务器,拒绝卡顿,即可畅玩!
即刻畅玩

白皮书

数据智能知识图谱
火山引擎数智化平台基于字节跳动数据平台,历时9年,基于多元、丰富场景下的数智实战经验打造而成
立即获取

最新活动

热门联机游戏服务器

低至22元/月,畅玩幻兽帕鲁和雾锁王国
立即部署

火山引擎·增长动力

助力企业快速增长
了解详情

数据智能VeDI

易用的高性能大数据产品家族
了解详情

一键开启云上增长新空间

立即咨询