数据仓库基本特征有哪些-优选内容
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(上)
数据仓库产品,在开源 ClickHouse 引擎之上做了技术架构重构,实现了云原生环境的部署和运维管理、存储计算分离、多租户管理等功能。在可扩展性、稳定性、可运维性、性能以及资源利用率方面都有巨大的提升。 截至 2022 年 2 月,ByteHouse 在字节跳动内部部署规模超过 1 万 8000 台,单集群超过 2400 台。经过内部数百个应用场景和数万用户锤炼,并在多个外部企业客户中得到推广应用。## 产品特性**ByteHouse 以提供高性能、...
数仓黄金价值圈: 为什么、是什么、怎么做|社区征文
让数据服务无处不在3、清晰明了是数据GPS,即清晰的管理、追踪、定位数据把为什么想清楚了,接下来就是探讨数据仓库是什么,是否能满足以上的诉求# 二、是什么,数据仓库定义数据仓库广泛定义:数据仓库是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策。随着数字化浪潮到来仅仅支撑管理决策暴露出了局限性,**应在管理决策基础上...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(中)
云原生数据仓库 ByteHouse 总体架构图如上图所示,设计目标是实现高扩展性、高性能、高可靠性、高易用性。从下往上,总体上分服务层、计算层和存储层。## 服务层服务层包括了所有与用户交互的内容,包括用户管理、身份验证、查询优化器,事务管理、安全管理、元数据管理,以及运维监控、数据查询等可视化操作功能。 **服务层主要包括如下组件:**- **资源管理器**资源管理器(Resource Manager)负责对计算资源进行统一的...
浅谈大数据建模的主要技术:维度建模 | 社区征文
涵盖其基本理论、一般过程、维度表设计和事实表设计等各个方面,也为我们后面讲Hadoop 数据仓库实战打下基础。## 维度建模关键概念### 度量和环境维度建模是支持对业务过程的分析,所以它是通过对业务过程度量进行建模来实现的。> **那么,什么是度量呢?**实际上,我们通过和业务方、需求方交谈,或者阅读报表、图表等,可以很容易地识别度量。考虑如下业务需求:- 店铺上个月的销售额如何?- 店铺库存趋势如何?- 店铺的访...
数据仓库基本特征有哪些-相关内容
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅵ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 **以下为 ByteHouse 技术白皮书【核心技术解析——元数据】版块摘录...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅳ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群**近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。以下为 ByteHouse 技术白皮书【数据导入导出】版块摘录。技术白皮书(Ⅰ)(Ⅱ...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅲ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群**近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。以下为 ByteHouse 技术白皮书**作业执行流程版块**摘录。技术白皮书(上...
浅谈数仓建设及数据治理 | 社区征文
## 一、前言在谈数仓之前,先来看下面几个问题:### 1. 数仓为什么要分层?1. 用空间换时间,通过大量的预处理来提升应用系统的用户体验(效率),因此数据仓库会存在大量冗余的数据;不分层的话,如果源业务系统的业... 常见的有 **范式建模法、维度建模法、实体建模法**等,*每种方法从本质上将是从不同的角度看待业务中的问题*。#### 1) 范式建模法范式建模法其实是我们在构建数据模型常用的一个方法,该方法的主要由 Inmon 所提倡...
DataLeap数据仓库流程最佳实践
基于上述表数据,我们的数据分析需求如下:1)“查看最近三天商店销售额情况(未促销)TOP3”2)“查看最近三天消费最多的用户与金额TOP3”3)“获取商店地域分布情况”经典数据仓库按照大类分为基础数据层、应用数据层。本样例中,我们的数据仓库建设思路是:* ODS(从生产系统采集原始数据,并将原始数据集成...
DataLeap数据仓库流程最佳实践
基于上述表数据,我们的数据分析需求如下:1)“查看最近三天商店销售额情况(未促销)TOP3”2)“查看最近三天消费最多的用户与金额TOP3”3)“获取商店地域分布情况” 经典数据仓库按照大类分为基础数据层、应用数据层。 本样例中,我们的数据仓库建设思路是: ODS(从生产系统采集原始数据,并将原始数据集成冗余宽表) DWD(对ODS冗余表数据进行轻度过滤处理) DWM (基于DWD表与业务需求,轻度聚合最近三天的数据) APP (基于DWD或DWM,...
ELT in ByteHouse 实践与展望
在ByteHouse内部进行数据转换,而无需依赖独立的ETL系统及资源。 火山引擎ByteHouse是一款基于开源ClickHouse推出的云原生数据仓库,本篇文章将介绍ByteHouse团队如何在ClickHouse的基础上,构建并优化ELT能力,... 同时又开发了非常多的特性。2020年, ByteHouse正式在字节跳动内部立项,2021年通过火山引擎对外服务。截止2022年3月,ByteHouse在字节内部总节点数达到18000个,而单一集群的最大规模是2400个节点。### ByteHou...