数据仓库的发展过程-相关文档
数据仓库是指一个面向主题、集成、相对稳定、历史数据的数据资源集合,用于支持企业决策所需的的数据分析和报表生成。数据仓库的发展历程可以追溯到上世纪80年代,可以分为以下几个阶段:
- 文件系统阶段
在这个阶段,数据仓库还不存在,数据分析一般采用文件方式存储,而不是数据库的形式。各个部门按照各自的需求将数据存储为文件,数据源复杂,数据质量难以保证,导致数据的统一分析和报表生成困难。缺乏控制和管理,不具备灵活性和容错性。
- 数据库阶段
这个阶段的数据仓库建设,开始采用关系数据库的形式,实现结构化数据的管理和分析。数据库技术的出现使得组织可以将数据存储在相对中心化的方式下,并且可以通过查询语言等技术进行分析,解决了文件系统阶段的问题。但是这个阶段数据采集变得更为困难,并且无法处理非结构化和半结构化数据。
- 数据仓库阶段
数据仓库的出现打破了数据管理局限性,通过ETL(Extract-Transform-Load)技术可以抽取非结构化和半结构化数据,转换成关系型数据存储于数据仓库当中。数据仓库可以更为好的进行数据分析、查询和数据挖掘。和关系型数据库不同,数据仓库强调面向主题,面向分析,历史数据的保存。
- 大数据阶段
随着大数据技术的逐渐成熟,数据仓库的技术也在不断发展。数据量的大幅度增长,传统数据仓库技术的处理能力逐渐被逼近极限。而大数据技术(如Hadoop)的出现,将分布式处理技术应用于数据仓库建设中,构建大规模分布式数据仓
免责声明
本文内容通过AI工具匹配关键字智能整合而成,仅供参考,火山引擎不对内容的真实、准确或完整作任何形式的承诺。如有任何问题或意见,您可以通过联系service@volcengine.com进行反馈,火山引擎收到您的反馈后将及时答复和处理。
数据仓库的发展过程-优选内容
ELT in ByteHouse 实践与展望
谈到数据仓库, 一定离不开使用Extract-Transform-Load (ETL)或 Extract-Load-Transform (ELT)。 将来源不同、格式各异的数据提取到数据仓库中,并进行处理加工。 传统的数据转换过程一般采用Extract-Transfor... 字节内部开始了对各种数据库的选型。经过多次实验,在实时分析版块,字节内部决定开始试水ClickHouse。2018年到2019年,字节内部的ClickHouse业务从单一业务,逐步发展到了多个不同业务,适用到更多的场景,包括BI 分析...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(上)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** **近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。** 白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 以下为 ByteHouse 技术白皮书前两个版块摘录。# 1.ByteHous...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(中)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 **以下为 ByteHouse 技术白皮书整体架构设计版块摘录。** [点...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅵ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 **以下为 ByteHouse 技术白皮书【核心技术解析——元数据】版块摘录...
数据仓库的发展过程-相关内容
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅳ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群**近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。以下为 ByteHouse 技术白皮书【数据导入导出】版块摘录。技术白皮书(Ⅰ)(Ⅱ...
数仓黄金价值圈: 为什么、是什么、怎么做|社区征文
所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。 4、反映历史变化【洞察秋毫】 数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出[定量分析](https://wiki.mbalib.com/wik...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅴ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 **以下为 ByteHouse 技术白皮书【多租户管理、运维监控管理】版块摘...
ByteHouse技术白皮书正式发布,云数仓核心技术能力首次全面解读
基于云原生架构的数据仓库百花齐放,快速迭代。相比起传统数仓,云原生数据仓库凭借更灵活、更具弹性化的特性,以及有效降低资源、人力成本的能力,在云市场上受到越来越多的关注,逐渐成为企业数字化基础设施中的关键“底座”。 《火山引擎云原生数据仓库 ByteHouse 技术白皮书》简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型...
浅谈数仓建设及数据治理 | 社区征文
发展提供方向,也就是数据驱动和赋能。### 3. 如何搭建一个好的数仓?1. **稳定**:数据产出稳定且有保障。2. **可信**:数据干净、数据质量高。3. **丰富**:数据涵盖的业务足够广泛。4. **透明**:数据构成体系足够透明。## 二、数仓设计 数仓设计的3个维度:- **功能架构**:结构层次清晰。- **数据架构**:数据质量有保障。- **技术架构**:易扩展、易用。### 1. 数仓架构按照数据流入流出的过程,数据仓库架构...
浅谈大数据建模的主要技术:维度建模 | 社区征文
一般过程、维度表设计和事实表设计等各个方面,也为我们后面讲Hadoop 数据仓库实战打下基础。## 维度建模关键概念### 度量和环境维度建模是支持对业务过程的分析,所以它是通过对业务过程度量进行建模来实现的。> **那么,什么是度量呢?**实际上,我们通过和业务方、需求方交谈,或者阅读报表、图表等,可以很容易地识别度量。考虑如下业务需求:- 店铺上个月的销售额如何?- 店铺库存趋势如何?- 店铺的访问情况如何( pv,...
DataLeap数据仓库流程最佳实践
前言 本实验以DataLeap on LAS为例,实际操作火山引擎数据产品,完成数据仓库的构建。 关于实验 预计部署时间:50分钟 级别:初级 相关产品:大数据开发套件、湖仓一体分析服务LAS 受众: 通用 环境说明 已购买DataLeap产品 已创建湖仓一体LAS队列 子账户具备DataLeap相关权限(参考:https://www.volcengine.com/docs/6260/65408) 实验说明 步骤1:创建项目 步骤2:计算资源组设置 本案例以湖仓一体Las为例,这里选择已创建的湖...