数据仓库存储用户密码-优选内容
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(上)
ByteHouse 是字节跳动自主研发的云原生数据仓库产品,在开源 ClickHouse 引擎之上做了技术架构重构,实现了云原生环境的部署和运维管理、存储计算分离、多租户管理等功能。在可扩展性、稳定性、可运维性、性能以及资源利用率方面都有巨大的提升。 截至 2022 年 2 月,ByteHouse 在字节跳动内部部署规模超过 1 万 8000 台,单集群超过 2400 台。经过内部数百个应用场景和数万用户锤炼,并在多个外部企业客户中得到推广应用。##...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0(中)
云原生数据仓库 ByteHouse 总体架构图如上图所示,设计目标是实现高扩展性、高性能、高可靠性、高易用性。从下往上,总体上分服务层、计算层和存储层。## 服务层服务层包括了所有与用户交互的内容,包括用户管理、身份验证、查询优化器,事务管理、安全管理、元数据管理,以及运维监控、数据查询等可视化操作功能。 **服务层主要包括如下组件:**- **资源管理器**资源管理器(Resource Manager)负责对计算资源进行统一的...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅳ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群**近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。以下为 ByteHouse 技术白皮书【数据导入导出】版块摘录。技术白皮书(Ⅰ)(Ⅱ...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅲ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群**近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。以下为 ByteHouse 技术白皮书**作业执行流程版块**摘录。技术白皮书(上...
数据仓库存储用户密码-相关内容
浅谈大数据建模的主要技术:维度建模 | 社区征文
## 前言我们不管是基于 Hadoop 的数据仓库(如 Hive ),还是基于传统 MPP 架构的数据仓库(如Teradata ),抑或是基于传统 Oracle 、MySQL 、MS SQL Server 关系型数据库的数据仓库,其实都面临如下问题:- 怎么组织数... 事实表还存储了引用的维度。事实表通常和一个 **企业的业务过程** 紧密相关,由于一个企业的业务过程数据构成了其所有数据的绝大部分,因此事实表也通常占用了数据仓库存储的绝大部分。比如对于某个超市来说,其 ...
火山引擎云原生数据仓库 ByteHouse 技术白皮书 V1.0 (Ⅵ)
> 更多技术交流、求职机会,欢迎关注**字节跳动数据平台微信公众号,回复【1】进入官方交流群** 近日,《火山引擎云原生数据仓库 ByteHouse 技术白皮书》正式发布。白皮书简述了 ByteHouse 基于 ClickHouse 引擎的发展历程,首次详细展现 ByteHouse 的整体架构设计及自研核心技术,为云原生数据仓库发展,及企业数字化转型实战运用提供最新的参考和启迪。 **以下为 ByteHouse 技术白皮书【核心技术解析——元数据】版块摘录...
ByConity 技术详解之 ELT
来将业务数据转换为适合数仓的数据模型,然而,这依赖于独立于数仓外的ETL系统,因而维护成本较高。ByConity 作为云原生数据仓库,从0.2.0版本开始逐步支持 Extract-Load-Transform (ELT),使用户免于维护多套异构数据... 典型的数据链路如下:我们将行为数据、日志、点击流等通过MQ/ Kafka/ Flink将其接入存储系统当中,存储系统又可分为域内的HDFS 和云上的 OSS& S3 这种远程储存系统,然后进行一系列的数仓的ETL操作,提供给 OLAP系统完...
ELT in ByteHouse 实践与展望
以火山引擎ByteHouse为例的云原生数据仓库,凭借其强大的计算能力、可扩展性,开始全面支持Extract-Load-Transform (ELT)的能力,从而使用户免于维护多套异构系统。具体而言,用户可以将数据导入后,通过自定义的SQL语句... 典型的数据链路如下:我们将行为数据、日志、点击流等通过MQ/Kafka/Flink将其接入存储系统当中,存储系统又可分为域内的HDFS和云上的OSS&S3这种远程储存系统,然后进行一系列的数仓的ETL操作,提供给OLAP系统完成分析查...
数仓进阶篇@记一次BigData-OLAP分析引擎演进思考过程 | 社区征文
数仓多维数据模型详细设计,欢迎一起加入交流探讨,希望能给读者在实际业务场景-OLAP分析演进过程中有些不一样的IDea。 ## 场景目前数据存储的业务类型-**OLTP**,**OLAP......****1、** 其中一种是企业知识库... 在多用户场景下亦能拥有较高的响应速度和吞吐量,兼顾数据仓库,具有实时,批处理,多并发等优点。,因此数据仓库会存在大量冗余的数据;不分层的话,如果源业务系统的业... 并提供多样的数据应用,数据自下而上流入数据仓库后向上层开放应用,而数据仓库只是中间集成化数据管理的一个平台。**源数据**:此层数据无任何更改,直接沿用外围系统数据结构和数据,不对外开放;为临时存储层,是接口...