import volcengine_ml_platform from volcengine_ml_platform import wandb project = "ci" # 项目名称 id = "run_20230714_bb4b99f4" # run_id volcengine_ml_platform.init() api = wandb.TrackingApi() run = api.run(project=project, run_id=id)
>>> run.config {'batch_size': 32, 'channels': 16, 'epochs': 4, 'lr': 0.1}
>>> run.summary {'best_acc': 0.99, 'best_loss': 0.01, 'final_acc': 0.88, 'final_loss': 0.11}
# 导出所有图表 >>> h = run.history() >>> pd.DataFrame(h) step train_loss loss custom_step validation_loss 0 0 NaN 0.479459 NaN NaN 1 1 NaN 0.764807 NaN NaN 2 2 NaN 0.561282 NaN NaN 3 3 NaN 0.117248 NaN NaN 4 4 NaN 0.492853 NaN NaN ... ... ... ... ... ... 1095 1095 0.010417 NaN 9025.0 0.010417 1096 1096 0.010309 NaN 9216.0 0.010309 1097 1097 0.010204 NaN 9409.0 0.010204 1098 1098 0.010101 NaN 9604.0 0.010101 1099 1099 0.010000 NaN 9801.0 0.010000 [1100 rows x 5 columns] # 指定图表名称 >>> names = run.list_entity_names() >>> h = run.history(name=[names[0], names[1]]) >>> pd.DataFrame(h) loss custom_step step 0 0.479459 NaN 0 1 0.764807 NaN 1 2 0.561282 NaN 2 3 0.117248 NaN 3 4 0.492853 NaN 4 ... ... ... ... 1095 NaN 9025.0 1095 1096 NaN 9216.0 1096 1097 NaN 9409.0 1097 1098 NaN 9604.0 1098 1099 NaN 9801.0 1099 [1100 rows x 3 columns]
run.history()方法返回的数据与平台界面展示的数据完全一致,但是平台界面为了兼顾前端性能,返回的是经过采样的数据。如果需要看全量数据,需要使用
run.scan_history()方法
>>> table_names = run.list_table_names() # 获取所有表格的名称 >>> t = run.get_table(table_names[0]) # 指定其中一个表格,获取数据 >>> pd.DataFrame(t) round gpt-4 gpt-3.5 llama 0 a 1.0 0.8 0.9 1 b 0.5 0.6 0.9 2 c 0.1 0.6 0.3 3 d 0.3 0.5 1.5 4 e 0.4 0.4 0.1