更新时间:2023.06.06 17:37:04
事件分析作为数据分析最重要的分析方法之一,能够帮助我们研究某行为事件的发生对企业所产生的价值影响。火山引擎增长分析「事件分析」支持通过自定义指标、分组和筛选及多种可视化图表对用户行为进行多维分析,同时在数据智能洞察方面提供了异常数据分析的功能,可以帮助我们发现更多数据异常带来的影响。
事件(Event)
事件就是对企业所服务用户的所做行为的数据化描述。
事件能够描述:哪位用户(who)在什么时间(when)在什么场景(context)做了什么(what)。例如:用户在App中播放视频,就是一个用户行为。
属性(Params)
在火山引擎增长分析平台中,我们通过“事件名称+属性列表”组合的方式来详细准确的描述用户行为:
通过事件名称用以区分不同类型用户行为,如“video_play(播放视频)“、“like(点赞)”。
通过属性对事件进行详细描述,如通过“video_id=12358”、“play_mode=normal”进行进一步描述播放的具体视频及播放方式。
根据应用范围,属性又分为“事件属性”和“公共属性”两类:
事件属性:与单个或几个事件相关的属性,用以对这些事件进行展开描述,如video_play事件的video_id、video_name、play_mode属性,或video_add_favorite事件的video_id属性。
公共属性:包括用户属性和场景属性,可以为所有事件所共用。用户属性如用户的年龄、性别,场景属性如app版本、ip地址等。
在增长分析平台中,属性目前支持字符串(string)和数值(int)两种取值类型。
string类型属性如video_id、video_name。
int类型属性如video_play_time(视频播放的时长)。
事件分析是研究用户行为的常用手段,典型的使用场景包括(但不限于):
火山引擎增长分析提供的事件分析功能非常灵活,可以很好的满足各类场景下的统计需求。
增长分析平台的事件分析,支持以下指标的统计分析:
指标 | 含义 | 举例 |
---|---|---|
总次数(pv) | 统计事件的发生次数 | 统计用户在app内播放视频的总次数 |
总人数(uv) | 统计事件的发生人数 | 统计在app内播放过视频的去重用户总数 |
渗透率 | 事件触发总人数/全部活跃人数,其中分母为any_active_event事件的触发人数 | 查看新功能上线后活跃用户的使用占比情况 |
人均次数 | 即 pv/uv,事件的人均发生次数 | 统计用户播放视频的人均次数:pv/uv |
全活跃用户人均次数 | 事件触发总次数/全部活跃人数,其中分母为any_active_event事件的触发人数 | 查看新功能上线后活跃用户的人均使用次数情况 |
按…求和(sum) | 按事件的数值型(int)属性求和 | 统计视频播放的总时长:sum(video_play_duration) |
按...求最大值 | 某属性的值的最大值,只支持int型 | 看视频播放时长的最大值 |
按...求最小值 | 某属性的值的最小值,只支持int型 | 看视频播放时长的最小值 |
按…求平均值 | 某属性的值之和/事件发生次数,只支持int型 | 统计视频播放的平均时长:sum(video_play_time)/pv |
按…求人均值 | 某属性的值之和/事件发生人数,只支持int型 | 统计视频播放的人均时长:sum(video_play_time)/uv |
按...求全活跃用户人均值 | 某属性的值之和/全部活跃人数,其中分母为any_active_event事件的触发人数 | 统计活跃用户的视频播放的人均时长:sum(video_play_time)/全部活跃人数 |
按…求分位数 | 即把单位时间范围内的数据按从小到大排序后,求处在某一分位上的数; | 查看每日用户发生目标事件(此处为看视频)的次数分布情况 |
按…去重 | 即对事件参数进行去重统计 | 统计播放视频事件中播放过的视频数 |
按…和用户去重 | 即对事件参数和做过该事件的用户进行去重统计 | 统计用户看过的视频个数总和 |
事件分析功能界面由以下部分组成:
选择要分析的目标事件和统计指标,操作顺序如下:
查看分析结果的可视化图表,并根据需求进行调整。
默认情况下,系统会自动以折线图的方式展示过去7天的统计结果。
您可以根据需求对分析图表进行以下调整:
设定分析的时间粒度:5分钟级、小时级、天级、周级、月级;
可通过日历组件进行快捷设定分析时间段和自定义时间段;
快捷设定时间说明
粒度 | 快捷设定分析时间段 | 过去N.. | 最新(今天、本周周、本月等) | 次新(昨天、上周、上月等) |
---|---|---|---|---|
5分钟 | 今天, 昨天 | 天 | 今天 | 昨天 |
小时 | 今天, 昨天, 本周, 上周 | 天 | 今天 | 昨天 |
天 | 今天, 昨天, 本周, 上周, 本月, 上月 | 天 | 今天 | 昨天 |
周 | 本周, 上周, 本月, 上月 | 天 | 今天 | 昨天 |
月 | 本月, 上月 | 天 | 今天 | 昨天 |
自定义设定时间说明:具体时间至昨天、今天、n天前;n天前至昨天、今天、n天前。
可进行时间的对比的选择:上一周期、上同周期、去年同期、自定义时间;
日期 | 含义 |
---|---|
上一周期 | 首尾相接的上一段时间 |
上周同期 | 向前平移一周,每周顺序对应。 |
上月同期: | 向前平移一月,每月顺序对应,考虑到每个月天数不一致,无法直接平移一个月,因此不支持该选项。 |
去年同期 | 向前平移一年,相应月份和日期对应,具体策略为:直接改变年份,然后用对比时间的结束时间减去被对比时间的时间区间,得到对比时间的开始时间即可。 |
选择可视化图表类型:折线图、堆叠面积图、柱形图、双轴图;
对分析时间段进行缩放,以查看更细或更完整的数据图表;
当图表为“天级 折线图”时,点击线图上的点,就会显示显微镜功能(新建日期批注、存为用户分群、导出用户);
当事件分析组自定义指标,且图表为“天级 折线图”时,显微镜功能只支持“新建日期批注”。(更详细的显微镜功能,可参见显微镜功能)
当事件分析多指标或多分组值时,支持配置双轴展示;
可修改图例“A1 页面访问(总次数)”的名称,且保存图表为看板后,名称可同步到看板。
柱形图-指标说明:
说明
如果您希望查看对照组和日期对比的柱状图,请使用“堆叠图”图表样式查看。
展示统计结果的详细数据表。
详细数据表支持以下操作:
将需要长期监测的指标图表添加到看板中。
点击右上角的「保存到看板」,对要保存的看板进行操作:
图表名称:可以对图表进行重新命名,比如当前的指标为“页面访问DAU”,这样方便后续查看;
保存位置:可以选择个人和公共空间,更多介绍可以查看看板功能说明中对于个人和公共空间的描述;
保存路径:可以选择需要保存的位置;
选择图表类型:可以对当前的指标选择合适的展示方式,比如金额可以选择指标卡,uv的趋势可以选择折线图,如果有2个事件可以选择双轴展示等;
同时展示:如果希望在展示主要的图表类型中同时有合计值、环比等这样的展示,可以进行选择,比如选择了一个指标本双周新增用户数通过指标卡展示后,希望也看到具体环比、同比变化,就可以进行选择了,如下图;
在进行趋势分析时,数据的异常波动对于我们发现业务上的问题或机会有重要的提示作用。我们常常会基于经验判断波动是否正常,但常常会忽略一些看似正常,但并不符合波动规律的数据。通过异常诊断我们可以快速发现这些异常数据并展其开常用的维度,可以很好的帮助业务人员定位数据波动的原因。
异常数据是如何发现的?
借助异常诊断,我们会基于历史数据找到周期性规律,预测出查询时间内符合该规律的数据范围,辅助使用者发现异常数据,避免错失机会和问题。
展开常用维度的价值大吗?
通常情况下,发现到数据异常波动后,往往需要通过不同维度组合、下钻来定位可能引发波动的维度。这个过程往往因为维度过多、分析人员的经验不足而变得非常困难。
在增长分析产品中通过一次展开常用维度可以快速发现贡献度较高的维度及维度组合,节省了一个个维度下钻的时间,也降低了定位数据波动问题的门槛。
3.2.1 功能激活
当事件分析中事件和对照组的乘积不超过10(如2个事件*对照组5个=10个 可用,事件3个&对照组4个=12个 不可用)并且图表类型是折线图时,会激活“异常诊断”功能。
图表类型 | 事件数量(含自定义指标) * 对照组数量 | 事件属性 + 公共属性分组 |
---|---|---|
折线图 | <= 10 | 无 |
如下图:
3.2.2 图表区说明
异常诊断功能激活后,系统会取回溯天数内的数据进行计算,预测拟合出当前查询时间范围内的数据并以虚线显示在图中。虚线背后颜色较浅的色带表示符合预期的数据范围,色带的宽度由“置信区间”来决定。置信区间数值越大,表示宽容度越高,则更多的实线上的实际数据就会出现在色带范围中,而那些没有出现在色带范围内的实线上的数据点,则会被标记为“异常”点,以红色高亮显示,可以通过显微镜功能进入异常数据的纬度展开。
如下图:
参数设置
可以在下拉菜单中配置置信区间和回溯天数,如下图:
含义 | 取值区间 | |
---|---|---|
置信区间 | 包含在阈值范围内的数据占全部数据的比例 | 80%-99% |
回溯天数 | 早于所选开始日期的天数,选择足够的天数以便计算更贴合实际情况的阈值范围。 | 至少一个当前所选的日期范围至365天。 |
说明
“置信区间”100%时代表所有的真实数据点都不是异常。
异常标签
激活异常诊断后,数据点的提示框中会出现预测值以及预测的区间值。如果悬停的数据点刚好存在异常,提示框中会出现“异常”标签。
显微镜功能及开启异常诊断
目前异常诊断功能为BETA版,如果您使用有任何建议和反馈,欢迎给到我们反馈。
点击有异常的数据点,会出现显微镜功能,通过显微镜功能我们点击进入异常诊断,如下图:
进入异常诊断后,我们会在底部看到详细的数据,如下图:
说明
在没有通过显微镜点击进入异常诊断前,异常诊断中不会显示数据;
在维度明细中会罗列查询指标数据异常中,“参考值”和“实际值”包含的所有属性属性维度,每页默认会展示20个纬度,也可以在右下角位置进行重新设置展示的条数(如下图)。
在展开维度上方,有所选中的异常数据的基本信息,包括指标、参考值、实际值、差异,同时可以支持敏捷搜索属性维度,如下图:
说明
搜索:可以搜索指标的属性维度;
指标:事件分析中选择的指标;
参考值:期望值;
实际值:异常点实际数据;
差异:实际值和期望值之间的差异。
在展开的维度中,可以选择将该纬度进行“置顶/取消置顶”“置底/取消”,可以选择在新窗口打开,如下图:
在新窗口打开后,会进入到按选择的属性维度分组查看的事件分析中,可以进行更加详细的分析,如下图: